Answer: The approximate molecular mass of the polypeptide is 856 g/mol
Explanation:
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:
Or,
where,
= osmotic pressure of the solution = 4.19 torr
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (polypeptide) = 0.327 g
Volume of solution = 1.70 L
R = Gas constant =
T = temperature of the solution =
Putting values in above equation, we get:
Hence, the molar mass of the polypeptide is 856 g/mol
For it to be the same element it must contain the same number of protons
Answer:
Increase blood flow to the hands and feet
Explanation:
Answer:
A beta particle
Explanation:
The radioactive particle must undergo a beta decay to have the mass number unchanged but the atomic number to have decreased by one.
This type of beta decay results in the emission of a positron which is a type of beta particle. It resembles an electron but it has a positive charge of 1.
Answer: 35.1 kJ/mol
Explanation:
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
(1)
(1)
The final reaction is:
(3)
By adding (1) and (2)
Hence the expected value for the heat of sublimation of acetic acid is 35.1 kJ/mol