The full question asks to decide whether the gas was a specific gas. That part is missing in your question. You need to decide whether the gas in the flask is pure helium.
To decide it you can find the molar mass of the gas in the flask, using the ideal gas equation pV = nRT, and then compare with the molar mass of the He.
From pV = nRT you can find n, after that using the mass of gass in the flask you use MM = mass/moles.
1) From pV = nRT, n = pV / RT
Data:
V = 118 ml = 0.118 liter
R = 0.082 atm*liter/mol*K
p = 768 torr * 1 atm / 760 torr = 1.0105 atm
T = 35 + 273.15 = 308.15 K
n = 1.015 atm * 0.118 liter / [ 0.082 atm*liter/K*mol * 308.15K] =0.00472 mol
mass of gas = mass of the fask with the gas - mass of the flasl evacuated = 97.171 g - 97.129 g = 0.042
=> MM = mass/n = 0.042 / 0.00472 = 8.90 g/mol
Now from a periodic table or a table you get that the molar mass of He is 4g/mol
So the numbers say that this gas is not pure helium , because its molar mass is more than double of the molar mass of helium gas.
Covalent compounds: N2, CCl4, SiO2 and AlCl3.
Ionic compounds: CaCl2 and LiBr.
Hope this helps!
Answer:
ane, al, keto
ol, al, keto
ol, al, one
ol, ane, one.
Explanation:
The suffix –ol is used in organic chemistry principally to form names of organic compounds containing the hydroxyl (–OH) group, mainly alcohols (also phenol). The suffix was extracted from the word alcohol. The suffix also appears in some trivial names with reference to oils (from Latin oleum, oil).
Functional group is a ketone, therefore suffix = -one
Hydrocarbon structure is an alkane therefore -ane
The longest continuous chain is C5 therefore root = pent
The first point of difference rule requires numbering from the left as drawn to make the ketone group locant 2-
pentan-2-one or 2-pentanone
CH3CH2CH2C(=O)CH3
Answer:
A temporary magnet allows the user to determine when it is magnetic.
Answer:
2?
Explanation:
Well the rocks can be thrown around or just start breaking down. Sorry if I'm not correct