1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sasho [114]
3 years ago
13

If -2m+3=m-12 what is the value of 10m

Mathematics
1 answer:
ra1l [238]3 years ago
6 0
The answer is 50 because m=5
You might be interested in
Determine whether the two triangles are similar. If they are similar, write the singularity statement​
Keith_Richards [23]

Answer:

no

Step-by-step explanation:

6 0
4 years ago
Karissa rides her bicycle for 4 hours and is 22 miles from her house. After riding for 8 hours, she is
inysia [295]

Answer:

5.5

Step-by-step explanation:

We nned to divide to solve this!!

22/4 = 5.5

She is going 5.5 mph!!

Have an amazing day!!

Please rate and mark brainliest!!!!

8 0
3 years ago
What is the value of the expression i × i²× i³× i⁴
SCORPION-xisa [38]
i \cdot i^2\cdot i^3\cdot i^4=i^2\cdot i^8=-1\cdot1=-1
3 0
4 years ago
HELP HELP!!
Goryan [66]

Answer:

0

Step-by-step explanation:

p_1:~~y = x^2+2\\p_2:~~y = 3x^2+2\\ \\ V{p_1} = \Big(-\dfrac{b}{2a}, -\dfrac{\Delta}{4a}\Big) = \Big(-\dfrac{0}{2}, -\dfrac{0^2-4\cdot 2}{4}\Big) = \Big(0,2\Big) \\ \\ Vp_2 = \Big(x_V, -\dfrac{\Delta}{4a}\Big) = \Big(0, -\dfrac{0^2-4\cdot 3 \cdot 2}{4\cdot 3}\Big) = \Big(0,2\Big) \\ \\ \\ \text{The distance is }0,~~\text{Because the vertices are equal.}

7 0
3 years ago
A study of long-distance phone calls made from General Electric's corporate headquarters in Fairfield, Connecticut, revealed the
Jet001 [13]

Answer:

a) 0.4332 = 43.32% of the calls last between 3.6 and 4.2 minutes

b) 0.0668 = 6.68% of the calls last more than 4.2 minutes

c) 0.0666 = 6.66% of the calls last between 4.2 and 5 minutes

d) 0.9330 = 93.30% of the calls last between 3 and 5 minutes

e) They last at least 4.3 minutes

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

\mu = 3.6, \sigma = 0.4

(a) What fraction of the calls last between 3.6 and 4.2 minutes?

This is the pvalue of Z when X = 4.2 subtracted by the pvalue of Z when X = 3.6.

X = 4.2

Z = \frac{X - \mu}{\sigma}

Z = \frac{4.2 - 3.6}{0.4}

Z = 1.5

Z = 1.5 has a pvalue of 0.9332

X = 3.6

Z = \frac{X - \mu}{\sigma}

Z = \frac{3.6 - 3.6}{0.4}

Z = 0

Z = 0 has a pvalue of 0.5

0.9332 - 0.5 = 0.4332

0.4332 = 43.32% of the calls last between 3.6 and 4.2 minutes

(b) What fraction of the calls last more than 4.2 minutes?

This is 1 subtracted by the pvalue of Z when X = 4.2. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{4.2 - 3.6}{0.4}

Z = 1.5

Z = 1.5 has a pvalue of 0.9332

1 - 0.9332 = 0.0668

0.0668 = 6.68% of the calls last more than 4.2 minutes

(c) What fraction of the calls last between 4.2 and 5 minutes?

This is the pvalue of Z when X = 5 subtracted by the pvalue of Z when X = 4.2. So

X = 5

Z = \frac{X - \mu}{\sigma}

Z = \frac{5 - 3.6}{0.4}

Z = 3.5

Z = 3.5 has a pvalue of 0.9998

X = 4.2

Z = \frac{X - \mu}{\sigma}

Z = \frac{4.2 - 3.6}{0.4}

Z = 1.5

Z = 1.5 has a pvalue of 0.9332

0.9998 - 0.9332 = 0.0666

0.0666 = 6.66% of the calls last between 4.2 and 5 minutes

(d) What fraction of the calls last between 3 and 5 minutes?

This is the pvalue of Z when X = 5 subtracted by the pvalue of Z when X = 3.

X = 5

Z = \frac{X - \mu}{\sigma}

Z = \frac{5 - 3.6}{0.4}

Z = 3.5

Z = 3.5 has a pvalue of 0.9998

X = 3

Z = \frac{X - \mu}{\sigma}

Z = \frac{3 - 3.6}{0.4}

Z = -1.5

Z = -1.5 has a pvalue of 0.0668

0.9998 - 0.0668 = 0.9330

0.9330 = 93.30% of the calls last between 3 and 5 minutes

(e) As part of her report to the president, the director of communications would like to report the length of the longest (in duration) 4% of the calls. What is this time?

At least X minutes

X is the 100-4 = 96th percentile, which is found when Z has a pvalue of 0.96. So X when Z = 1.75.

Z = \frac{X - \mu}{\sigma}

1.75 = \frac{X - 3.6}{0.4}

X - 3.6 = 0.4*1.75

X = 4.3

They last at least 4.3 minutes

7 0
3 years ago
Other questions:
  • For general a and b, what does this imply about the relationship among p(a ∩ b), p(a) and p(a ∪ b)?
    10·1 answer
  • Why does the problem of finding the zeros (i.e. the inputs where a function assumes the value zero) receive such disproportionat
    11·1 answer
  • G o d d i c a n t . . .
    14·2 answers
  • Sandy is ordering donuts for the cafeteria. She has a budget of $100. If each donut costs
    14·1 answer
  • Which polynomials are in standard form A.)5-2x or B.)x^4-8x^2-16 or C.)5x^3+4x^4-3x+1 or is it D.)none of the above
    6·1 answer
  • Which mathematical property is demonstrated?
    6·1 answer
  • : A pack of crayon was shared between two friend Shantel and Carl in the ratio 3:5. If Shantel received 27 crayons, how many cra
    10·1 answer
  • A 22​-foot ladder is placed against a vertical wall of a​ building, with the bottom of the ladder standing on level ground 19 fe
    12·1 answer
  • 16y5+4y5-12y3+15y3?<br> What is the simplified form?
    11·2 answers
  • Which statement best represents the equation below 10+(-10) =0
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!