Using PV=nRT or the ideal gas equation, we substitute n= 15.0 moles of gas, V= 3.00L, R equal to 0.0821 L atm/ mol K and T= 296.55 K and get P equal to 121.73 atm. The Van der waals equation is (P + n^2a/V^2)*(V-nb) = nRT. Substituting a=2.300L2⋅atm/mol2 and b=0.0430 L/mol, P is equal to 97.57 atm. The difference is <span>121.73 atm- 97.57 atm equal to 24.16 atm.</span>
<h2>Natural Abundance for 10B is 19.60%</h2>
Explanation:
- The natural isotopic abundance of 10B is 19.60%.
- The natural isotopic abundance of 11B is 80.40%.
- The isotopic masses of boron are 10.0129 u and 11.009 u respectively.
For calculation of abundance of both the isotopes -
Supposing it was 50/50, the average mass would be 10.5, so to increase the mass we need a more percentage of 11.
Determining it as an equation -
10x + 11y= 10.8
x+y=1 (ratio)
10x + 10y = 10
By taking the denominator away from the numerator
we get;
y = 0.8
x + y = 1
∴ x = 0.2
To get percentages we need to multiply it by 100
So, the calculated abundance is 80% for 11 B and 20% 10 B.
Answer:
False
Explanation:
It is not true that this is an example of a chemical reaction. This is a typical example of physical reaction.
Most physical changes are often phase changes.
- A phase change is a change in the physical state of a body.
- In this change, it is from solid to liquid.
- Now new substances are formed.
- When substances are changed from one form to another, it is a physical change.
In a chemical change, a new substance is formed at the end of the process.
percentage error=difference/actual value x 100
=0.534/13.0 x 100
=4.11%