Answer: Yes,
is a strong acid.
acid =
, conjugate base =
, base =
, conjugate acid = 
Explanation:
According to the Bronsted-Lowry conjugate acid-base theory, an acid is defined as a substance which looses donates protons and thus forming conjugate base and a base is defined as a substance which accepts protons and thus forming conjugate acid.
Yes
is a strong acid as it completely dissociates in water to give
ions.

For the given chemical equation:

Here,
is loosing a proton, thus it is considered as an acid and after losing a proton, it forms
which is a conjugate base.
And,
is gaining a proton, thus it is considered as a base and after gaining a proton, it forms
which is a conjugate acid.
Thus acid =
conjugate base =
base = 
conjugate acid =
.
Answer:
The average kinetic energy of a particle is proportional to the temperature in Kelvin.
Explanation:
The kinetic molecular theory states that particles of matter are in constant motion and collide frequently with each other as well as with the walls of the container.
The collisions between particles are completely elastic. The kinetic energy of the particles of a body depends on the temperature of the body since temperature is defined as a measure of the average kinetic energy of the particles of a body.
Therefore, the average kinetic energy of a particle is proportional to the temperature in Kelvin.
Multiple by 2 because it was give u right answer
The answer is NO.
Mono- means 1, so monoxide would indicate that there is 1 oxygen.
The N is double bonded to the O:
N=O
And has an unpaired set of electrons
Answer:
It takes 5.83s to decrease the concentration of the reactant from 0.537M to 0.100M
Explanation:
A zero-order reaction follows the equation:
[A] = [A]₀ - kt
<em>Where [A] is actual reaction of the reactant = 0.100M</em>
<em>[A]₀ the initial concentration = 0.537M</em>
<em>k is rate constant = 0.075Ms⁻¹</em>
<em>And t is time it takes:</em>
<em />
0.100M = 0.537M -0.075Ms⁻¹t
-0.437M = -0.075Ms⁻¹t
5.83s = t
It takes 5.83s to decrease the concentration of the reactant from 0.537M to 0.100M