Answer:
Volume of the gass will decrease by three times of the original volume
Explanation:
Volume is inversly propotional to the pressure applied on it.
Explanation:
To balance the reactions given, we must understand that the principle to follow is the law of conservation of matter.
Based on this premise, the number of moles of species on the reactant and product side must be the same;
Li + Br₂ → LiBr
Put a,b and c as the coefficient of each species
aLi + bBr₂ → cLiBr
balancing Li;
a = c
balancing Br;
2b = c
let a = 1;
c = 1
b =
or a = 2, b = 1 , c = 2
2Li + Br₂ → 2LiBr
P + Cl₂ → PCl₃
Using the same method;
aP + bCl₂ → cPCl₃
balancing P;
a = c
balancing Cl;
2b = 3c
let a = 1;
c = 1
b =
or
a = 2, b = 3, c = 2
2P + 3Cl₂ → 2PCl₃
iii,
H₂ + SO₂ → H₂S + H₂O
use coefficients a,b,c and d;
aH₂ + bSO₂ → cH₂S + dH₂O
balancing H;
2a = 2c + 2d
balancing S;
b = c
balancing O
2b = d
let b = 1,
c = 1
d = 2
a = 3
3H₂ + SO₂ → H₂S + 2H₂O
Answer
is: The molar solubility of calcium phosphate is 108s⁵ = Ksp.
<span>
Balanced chemical reaction: Ca</span>₃(PO₄)₂(s) → 3Ca²⁺(aq) + 2PO₄³⁻(aq).<span>
[Ca²</span>⁺] =
3s(Ca₃(PO₄)₂) =
3s.<span>
[PO</span>₄³⁻] = 2s.<span>
Ksp = [Ca²</span>⁺]³ · [PO₄³⁻]².<span>
Ksp = (3s)³ · (2s)².
Ksp = 108s</span>⁵.
s = ⁵√(Ksp ÷ 108).
Answer:
pure water will have the lowest boiling point.
The cost of one antacid is 2.325 cents per tablet.
<u>Explanation:</u>
As per the question based on the student analysis we know that,
Total antacid tablets in a bottle = 120
Purchase Price of a bottle = $ 2.79
Cost of 1 antacid tablet
As we know $1 = 100 cent
The cost of 1 antacid tablet =
× 100 cents = 2.325 cents/tablet
.
Thus we came to know that it costs 2.325 cents/tablet
.