Answer:
ΔH°r = -483.64 kJ
Explanation:
Let's consider the following balanced equation.
2 H₂(g) + O₂(g) ⇒ 2 H₂O(g)
We can calculate the standard enthalpy change of the reaction (ΔH°r) using the following expression.
ΔH°r = ∑ΔH°f(p) × np - ∑ΔH°f(r) × nr
where
ΔH°f: standard heat of formation
n: moles
p: products
r: reactants
ΔH°r = ΔH°f(H₂O(g)) × 2 mol - ΔH°f(H₂(g)) × 2 mol - ΔH°f(O₂(g)) × 1 mol
ΔH°r = (-241.82 kJ/mol) × 2 mol - 0 kJ/mol × 2 mol - 0 kJ/mol × 1 mol
ΔH°r = -483.64 kJ
Answer:
Rock
Explanation:
Let's calculate the density of each object:
Rock:
Pencil:

Therefore the rock is denser.
Answer:
In ionic bonding, atoms transfer electrons to each other. Ionic bonds require at least one electron donor and one electron acceptor. In contrast, atoms with the same electronegativity share electrons in covalent bonds, because neither atom preferentially attracts or repels the shared electrons.
Answer:
sulfur
Explanation:
sulfur has 4p electrons.
phosphorus has 3p electrons.
The question is asking which one has 4
The number of calories that are required to change the temperature of 2.18 g of water from 15.3 c to 69.5 c is <u>118.16 cal</u>
<u><em> calculation</em></u>
- Heat in calories = MCΔ T where,
- M(mass)= 2.18 g
- C(specific heat capacity)= 1.00 cal/g/c
- ΔT( change in temperature)= 69.5- 15.3 =54.2 c
heat is therefore= 2.18 g x 1.00 cal/g/c x 54.2 c=118.16 cal