1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slavikrds [6]
3 years ago
12

Select the correct answer. What causes a ray of white light to split into seven colors when passed through a prism? A. refractio

n B. reflection C. filtering D. absorption
Physics
1 answer:
babunello [35]3 years ago
6 0

Answer:

refraction

Explanation:

the answer is refraction

You might be interested in
What is the difference between diatomic and poly-atomic molecules? Site some examples.
Olegator [25]
Their difference lies in the prefix used before each root word, atom. The diatomic molecules are composed only of 2 atoms such as that of the diatomic elements: H2, O2, N2, Cl2, etc. On the other hand, polyatomic molecules are made up of three or mole atoms such as NH4+, H2SO4, etc. 
8 0
3 years ago
Why does the total amount of energy before and after<br> any energy transformations remain the same?
snow_tiger [21]

The Law of Conservation of Energy states that, in an isolated system, energy remains constant and can not be created or destroyed, only transferred from one form to another. This law was created by Julius Robert Mayer.

8 0
4 years ago
Read 2 more answers
PLEASE HELP : What happens in obese mice? (Physiology)
irina1246 [14]

Answer and

Explanation:

The gut microbiota has recently emerged as an important, and previously unappreciated, player in host physiology (1). In particular, the gut microbiota contributes to a variety of physiological and pathophysiological processes in the host including immune disorders (2–4), atherosclerosis (5), irritable bowel syndrome (6, 7), blood pressure regulation (8), and chronic kidney disease (9, 10). Bacteria residing in the human gut are an important component of human physiology: the total wet weight of gut microbes in the human has been estimated to be 175 g–1.5 kg (11, 12), and the cells of the microbiota outnumber human cells by 10:1 (1). These bacteria interact with the immune system of the host (13), and secrete a variety of metabolites, which enter host circulation and can affect a variety of physiological parameters (8, 14), reviewed in Ref. (15). In fact, metabolites produced by the gut microbiota have been found to play key roles in renal disease (16), blood pressure regulation (8), and immune disorders (2–4). Therefore, just as we consider the genetic background of an animal or an individual to be an important contributing factor to their physiology, so too must we consider the genetic background of the microbiota associated with that animal.

Gut microbiota vary greatly amongst laboratory animals, and these differences result in notable differences in experimental results. Mice of the same strain from different vendors have different microbiota profiles (17), and similarly, the same mice housed at different institutions have different microbiota profiles (18, 19). Conversely, inoculating two different inbred mouse strains with the same gut bacteria leads to differences in host gene expression between the two mouse strains (20). Clearly, there is a complex interplay between the genetics of the microbiota and that of the host organism, which has only recently begun to be appreciated.

Go to:

Gut Microbiota as an Experimental Parameter

Examples in the literature have highlighted the important and unexpected ways in which gut microbiota can affect a variety of experimental parameters. In a series of studies, Vijay-Kumar et al. (13, 21) reported that although TLR5 null animals initially had a colitis phenotype, when these mice were “rederived” and their gut microbiota altered, the colitis phenotype was greatly attenuated, and instead the null animals exhibited metabolic syndrome. In addition, Lathrop et al. put forward a model by which T-cells are educated not only by self/non-self mechanisms, but also by microbiota-derived “non-self” antigens (22). Accordingly, they found that the presence or absence of microbiota determined whether T cells would induce colitis in mice. Finally, Yang et al. reported that when the same knockout mice were housed at two different institutions, they had markedly different microbiota profiles – and the mice at one institution (MIT) were quite susceptible to colitis, whereas mice at the other institution (MHH) failed to develop any significant pathology under the same conditions (19). Unequivocally, altering gut microbiota – even by housing animals at different institutions – can have dramatic effects on the phenotype observed.

Go to:

Gut Microbiota and Obesity and Diabetes

It is important to note that not only can microbiota affect host physiology, but the gut microbiota are not necessarily stable over time. Rather, gut microbiota can change or shift as a result of experimental manipulation (in animals) or changes in lifestyle or nutrition (in humans). It is now appreciated that there are “shifts” in microbiota that occur in obesity in mice, rats, and humans (23–26). In one study, Turnbaugh et al. (25) examined human female twin pairs concordant for leanness or obesity, and found that obesity was associated with phylum-level changes in microbiota.

7 0
3 years ago
The current theory of the structure of the Earth, called plate tectonics, tells us that the continents are in constant motion.
lesya [120]

Answer:

(a) m = 1.6 x 10²¹ kg

(b) K.E = 2.536 x 10¹¹ J

(c) v = 7.12 x 10⁵ m/s

Explanation:

(a)

First we find the volume of the continent:

V = L*W*H

where,

V = Volume  of Slab = ?

L = Length of Slab = 4450 km = 4.45 x 10⁶ m

W = Width of Slab = 4450 km = 4.45 x 10⁶ m

H = Height of Slab = 31 km = 3.1 x 10⁴ m

Therefore,

V = (4.45 x 10⁶ m)(4.45 x 10⁶ m)(3.1 x 10⁴ m)

V = 6.138 x 10¹⁷ m³

Now, we find the mass:

m = density*V

m = (2620 kg/m³)(6.138 x 10¹⁷ m³)

<u>m = 1.6 x 10²¹ kg</u>

<u></u>

(b)

The kinetic energy will be:

K.E = (1/2)mv²

where,

v = speed = (1 cm/year)(0.01 m/1 cm)(1 year/365 days)(1 day/24 h)(1 h/3600 s)

v = 3.17 x 10⁻¹⁰ m/s

Therefore,

K.E = (1/2)(1.6 x 10²¹ kg)(3.17 x 10⁻¹⁰ m/s)²

<u>K.E = 2.536 x 10¹¹ J</u>

<u></u>

(c)

For the same kinetic energy but mass = 77 kg:

K.E = (1/2)mv²

2.536 x 10¹¹ J = (1/2)(77 kg)v²

v = √(2)(2.536 x 10¹¹ J)

<u>v = 7.12 x 10⁵ m/s</u>

7 0
3 years ago
What are the body parts to this figure? Any of the body parts. (Please)
vlabodo [156]
1 - Skull
2 - Mandible
3 - Scapula
4 - Sternum
5 - Ulna
6 - Radius
7 - Pelvis
8 - Femur
9 - Patella
10 - Tibia
11 - Fibula
12 - Metatarsals
13 - Clavicle
14 - Ribs (rib cage)
15 - Humerus
16 - Spinal column
17 - Carpals
18 - Metacarpals
19 - Phalanges
20 - Tarsals
21 - Phalanges
3 0
4 years ago
Other questions:
  • What forces below earth's surface shape landforms?
    8·1 answer
  • Why don’t we feel the gravitational pull of objects around us?
    14·1 answer
  • Which muscle group works the hardest (isometrically) when performing a wrist curl in the pronated position?
    8·2 answers
  • An athlete at the gym holds a 2.5 kg steel ball in his hand. His arm is 70 cm long and has a mass of 4.0 kg.
    15·1 answer
  • The temperature dependence of classical expression for electrical resistivity is​
    10·1 answer
  • which best describes the difference between speed and velocity? A) velocity is instantaneous ,B) speed is a vector quantity
    14·1 answer
  • A object is placed between the focal point and the lens of a concave lens. Where will the image be formed?
    15·1 answer
  • Which statement is best supported by the information in the chart? Wave X and Wave Y are mechanical waves, and Wave Z is an elec
    9·1 answer
  • the gravitational force acts on all objects in proportion to their mass. neglecting air resistance, why don’t heavy objects fall
    5·1 answer
  • An earthmover slows from 42.0 km/h to 4.00 km/h in 4.75 s. What is its rate of acceleration in m/s2
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!