Average velocity is calculated as the division of displacement and change in time so the answer would be 804 km/36000 s=0.02 m/s
Generally speaking, there are two types of substances; acids and bases. Bases tend to be alkaline and have a higher Ph while acids are acidic and have a lower value on the Ph scale.
<span>c.the chemical energy of the fluids inside the wand</span>
This question involves the concepts of the equations of motion, kinetic energy, and potential energy.
a. The kinetic energy of the rocket at launch is "3.6 J".
b. maximum gravitational potential energy of the rocket is "3.6 J".
<h3>a. KINETIC ENERGY AT LAUNCH</h3>
The kinetic energy of the rocket at launch is given by the following formula:

where,
- K.E = initial kinetic energy = ?
- m = mass of rocket = 0.05 kg
= initial speed = 12 m/s
Therefore,

K.E = 3.6 J
<h3>
b. MAXIMUM GRAVITATIONAL POTENTIAL ENERGY</h3>
First, we will use the third equation of motion to find the maximum height reached by rocket:

where,
- g = -9.81 m/s²
- h = maximum height = ?
- vf = final speed = 0 m/s
Therefore,
2(-9.81 m/s²)h = (0 m/s)² - (12 m/s)²
h = 7.34 m
Hence, the maximum gravitational potential energy will be:
P.E = mgh
P.E = (0.05 kg)(9.81 m/s²)(7.34 m)
P.E = 3.6 J
Learn more about the equations of motion here:
brainly.com/question/5955789
Answer:
p_{f} = 6 m / s
Explanation:
We can solve this exercise using conservation of momentum. For this we define a system formed by the two balls, so that the forces during the collision have been intense and the moment is preserved
Initial instant. Before the crash
p₀ = m v +0
Final moment. Right after the crash
= (m + m) v_{f}
how the moment is preserved
p₀ = p_{f}
m v = 2 m v_{f}
v_{f} = v / 2
we calculate
v_{f} = 12/2
p_{f} = 6 m / s