<u>Answer</u>
1) A. 96 Candelas
2) A. Both of these types of lenses have the ability to produce upright images.
3) C. 5 meters
<u>Explanation</u>
Q1
The formula for calculation the luminous intensity is;
Luminous intensity = illuminance × square radius
Lv = Ev × r²
= 6 × 4²
= 6 × 16
= 96 Candelabra
Q2
For converging lenses, an upright image is formed when the object is between the lens and the principal focus while a diverging lens always forms and upright image.
A. Both of these types of lenses have the ability to produce upright images.
Q3
Luminous intensity = illuminance × square radius
square radius = Luminous intensity/ illuminance
r² = 100/4
= 25
r = √25
= 5 m
Answer:
0.0619 m^3
Explanation
number of moles = n = 4.39 mol
pressure = P = 2.25 atm =2.25×1.01×10^5 Pa= 2.27×10^5 Pa
Molar gas constant =R = 8.31 J/(mol K)
Temperature T= 385K
volume of gas = V =?
BY GENERAL GAS LAW WE HAVE
PV = nRT
or V = nRT/P
or V = (4.39×8.31×385)/(2.27×10^5)
V = 0.0618728
V = 0.0619 m^3
Answer:
4.5m/s
Explanation:
Linear speed (v) = 42.5m/s
Distance(x) = 16.5m
θ= 49.0 rad
radius (r) = 3.67 cm
= 0.0367m
The time taken to travel = t
Recall that speed = distance / time
Time = distance / speed
t = x/v
t = 16.5/42.5
t = 0.4 secs
tangential velocity is proportional to the radius and angular velocity ω
Vt = rω
Angular velocity (ω) = θ/t
ω = 49/0.4
ω = 122.5 rad/s
Vt = rω
Vt = 0.0367 * 122.5
Vt =4.5 m/s
The answer is step by step 65
Answer:
1. sediment layering and compacting on top of each other and solidifying
2. sediment layering and compacting (not as much) on top of each other and solidifying, just not as much
Explanation:
hope this helps! :))