In order to decrease the friction on the slide,
we could try some of these:
-- Install a drippy pipe across the top that keeps continuously
dripping olive oil on the top end of the slide. The oil oozes
down the slide and keeps the whole slide greased.
-- Hire a man to spread a coat of butter on the whole slide,
every 30 minutes.
-- Spray the whole slide with soapy sudsy water, every 30 minutes.
-- Drill a million holes in the slide,and pump high-pressure air
through the holes. Make the slide like an air hockey table.
-- Keep the slide very cold, and keep spraying it with a fine mist
of water. The water freezes, and a thin coating of ice stays on
the slide.
-- Ask a local auto mechanic to please, every time he changes
the oil in somebody's car, to keep all the old oil, and once a week
to bring his old oil to the park, to spread on the slide. If it keeps
the inside of a hot car engine slippery, it should do a great job
keeping a simple park slide slippery.
-- Keep a thousand pairs of teflon pants near the bottom of the ladder
at the beginning of the slide. Anybody who wants to slide faster can
borrow a set of teflon pants, put them on before he uses the slide, and
return them when he's ready to go home from the park.
I am going to need a picture for this question
Answer:
La posición en la que se encuentra el móvil en el instante t = 30 s es 172 m.
Explanation:
El movimiento rectilíneo uniforme (MRU) es el movimiento que describe un cuerpo o partícula a través de una línea recta a velocidad constante.
La distancia recorrida, x
, por un móvil que tiene un MRU con un velocidad v durante el intervalo de tiempo t es:
x= x0 + v*t
donde x0 es la posición inicial.
En este caso:
Reemplazando:
x= 22 m + 5 m/s* 30 s
Resolviendo:
x= 22 m + 150 m
x= 172 m
<u><em>La posición en la que se encuentra el móvil en el instante t = 30 s es 172 m.</em></u>
Kinetic and Potential Energy HistoryA roller coaster train going down hill represents merely a complex case as a body is descending an inclined plane. Newton's first two laws relate force and acceleration, which are key concepts in roller coaster physics. At amusement parks, Newton's laws can be applied to every ride. These rides range from 'The Swings' to The 'Hammer'. Newton was also one of the developers of calculus which is essential to analyzing falling bodies constrained on more complex paths than inclined planes. A roller coaster rider is in an gravitational field except with the Principle of Equivalence.Potential EnergyPotential energy is the same as stored energy. The "stored" energy is held within the gravitational field. When you lift a heavy object you exert energy which later will become kinetic energy when the object is dropped. A lift motor from a roller coaster exerts potential energy when lifting the train to the top of the hill. The higher the train is lifted by the motor the more potential energy is produced; thus, forming a greater amount if kinetic energy when the train is dropped. At the top of the hills the train has a huge amount of potential energy, but it <span>has very little kinetic energy.Kinetic Energy The word "kinetic" is derived from the Greek word meaning to move, and the word "energy" is the ability to move. Thus, "kinetic energy" is the energy of motion --it's ability to do work. The faster the body moves the more kinetic energy is produced. The greater the mass and speed of an object the more kinetic energy there will be. Hope this helped:))))</span>
It brings cold water from the bottom of the ocean.