When precipitation hits the ground and hydrosphere
Answer:
The work done by the gravel to stop the truck is 520.44 kJ
Explanation:
<u>Step 1</u>: Data given
Mass of the truck = 3047.8 kg
The ramp has an angle of 9.5 °
Velocity of the truck = 20.68 m/s
distance = 26.6 meters
<u>Step 2:</u> Calculate initial kinetic energy
sin 9.5° = 0.165
h = ℓ*sin 9.5° = 26.6*0.165= 4.39 m
Ek = 1/2m*Vo² = 1/2*3047.8*20.68² = 651714.7 Joule = 651.7 kJ = initial kinetic energy
<u>Step 3: </u>Calculate potential energy
Epot = U = m*g*h = 3047.8*9.81*4.39 = 131256.25 Joule = 131.26 kJ
<u>Step 4:</u> What work is done by the truck on the gravel?
Frictional energy Ef = 651.7 kJ - 131.26 kJ = 520.44 kJ
The result that should be established is in the form
y = f(x)
where x, the amount of sunlight is the controlled (independent) variable,
y = height (growth) that corresponds to the amount of sunlight. Therefore y depends on x.
Clearly,
x, the amount of sunlight is the independent variable. It can be controlled.
y, the measured amount of growth is the dependent variable.
Answer:
The independent variable is the amount of sunlight.
The dependent variable is the growth.
Answer:
The sum of all forces for the two objects with force of friction F and tension T are:
(i) m₁a₁ = F
(ii) m₂a₂ = T - F
1) no sliding infers: a₁ = a₂= a
The two equations become:
m₂a = T - m₁a
Solving for a:
a = T / (m₁+m₂) = 2.1 m/s²
2) Using equation(i):
F = m₁a = 51.1 N
3) The maximum friction is given by:
F = μsm₁g
Using equation(i) to find a₁ = a₂ = a:
a₁ = μs*g
Using equation(ii)
T = m₁μsg + m₂μsg = (m₁ + m₂)μsg = 851.6 N
4) The kinetic friction is given by: F = μkm₁g
Using equation (i) and the kinetic friction:
a₁ = μkg = 6.1 m/s²
5) Using equation(ii) and the kinetic friction:
m₂a₂ = T - μkm₁g
a₂ = (T - μkm₁g)/m₂ = 12.1 m/s²