Answer:
The distance between the ships is 87.84 km.
Explanation:
Given that,
Angle of first ship= 40°
Speed of first ship = 18 knots
Angle of second ship= 130°
Speed of second ship = 26 knots
We need to calculate the resultant velocity
Using cosine rule

Put the value into the formula




We need to calculate the distance between the ships

Put the value into the formula


Hence, The distance between the ships is 87.84 km.
Answer: Stage 1- Stars are born in a region of high density Nebula, and condenses into a huge globule of gas and dust and contracts under its own gravity. This image shows the Orion Nebula or M42 . Stage 2 - A region of condensing matter will begin to heat up and start to glow forming Protostars.
Explanation:
Answer: N = Mgcos(theta)
Therefore, the Normal reaction force is equal to Mgcos(theta)
Explanation:
See attached for a sketch.
From the attachment.
.
N = normal reaction force on block
W = weight of the block
theta = angle of the inclined plane to the horizontal
From the sketch, we can see that
N is equal in magnitude but opposite direction to Wy
N = Wy
And
Wy = Wcos(theta)
Wx = Wsin(theta)
Then,
N = Wy = Wcos(theta)
But W = mass × acceleration due to gravity = mg
N = Mgcos(theta)
Therefore, the Normal reaction force is equal to Mgcos(theta)
The answer should be 11,460 because the first half-life leaves 50 percent left and the next half-life would leave 25 percent which dates the bones at 11,460 years old.
We have: K.E. = 1/2 mv²
Here: m = 50 g = 0.05 Kg
v = 4 m/s
Substitute their values,
K.E. = 1/2 * 0.05 * 4²
K.E. = 1/2 * 0.05 * 16
K.E. = 0.4 J
In short, Your Answer would be 0.4 Joules
Hope this helps!