Answer:
Explanation:
STEP 1
<u>Given</u>
Radius of cylinder = r = 25cm, 2.5m
mass = 27kg
cylinder is mounted so as to rotate freely about a horizontal axis that is parallel to and 60cm to the central logitudinal axis of the cylinder
height = 0.6m
<u>part 1</u>
The cylinder is mounted so as to rotate freely about a horizontal axis tha is paralle to 60cm from the central longitudinal axis of then cylinder. The rotational inertia of the cylinder about the axis of rotation is given by
<em>I = Icm + mh²</em>
<em>∴ I = 1/2mr² + mh² = 1/2x27x (0.5)² + 20 x (0.6)²</em>
<em>I=13.09kg.m²</em>
where
<em>I</em>cm is the rotational inertia of the cylinder about its central axis
m is the mass of the cylinder
h is the distance between the axis of the rotation and the central axis of the cylinder
r is the radius of the cylinder
<em> </em><em> I=13.09kg.m²</em>
<em>part2</em>
<em>from the conservation of the total mechanical energy of the meter stick, the change in gravitational potential energyof the meter stick plus the change in kinetic energy must be zero</em>
<em>Δk + Δu = 0</em>
<em>1/2 </em>I(w²-w²) = Ui-Uf
1/2 x 13.09w² = mgh
∴w=√20 x 9.8 x 0.6/(1/2 x 13.09) =117.6/6.5
w=18.09rad/s
Answer:
Explanation:
When we do multiple trials of the same experiment, we can make sure that our results are consistent and not altered by random events. Multiple trials can be done at one time. If we were testing a new fertilizer, we could test it on lots of individual plants at the same time.
Answer:
a = ω^2 A formula for max acceleration (ignoring sign)
V = ω A formula for max velocity
V^2 = ω^2 A^2 = a A from first equation
E = 1/2 M V^2 = 1/2 * 2.98 * 3.55 * .0805 = .426 J
(kg * m/sec^2 * m = kg m^2 / sec^2 = Joule
because of god we can hear better at night.