Answer:
3ab
-------------------
(b+a)
Step-by-step explanation:
3/a - 3/b
-------------------
1/a^2 - 1/b^2
Multiply the top and bottom by a^2 b^2/ a^2/b^2 to clear the fractions
(3/a - 3/b) a^2 b^2
-------------------
(1/a^2 - 1/b^2) a^2b^2
3ab^2 - 3 a^2 b
-------------------
b^2 - a^2
Factor out 3ab on the top
3ab( b-a)
-------------------
b^2 - a^2
The bottom is the difference of squares
3ab( b-a)
-------------------
(b-a) (b+a)
Cancel like terms from the top and bottom
3ab
-------------------
(b+a)
Let the fist integer be x, the second is x+20
the product of the numbers is:
x(x+20)
the sum of the numbers is:
x+x+20=2x+20
the sum of the above operations will give us:
2x+20+x^2+20x=95
x^2+22x+20=95
this can be written as quadratic to be:
x^2+22x-75=0
solving the above we get:
x=3 and x=-25
but since the integers should be positive, then x=3
the second number is x+20=3+20=23
hence the numbers are:
3 and 23
Area of the rectangle is 2*6=12 in^2
12 could be = 1*12 or 2*6 or 3*4
P could be 2*(1+12)=2*13=26
2*(2+6)=2*8=16
2*(3+4)=2*7=14
the answer is 24 in (c)