1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Norma-Jean [14]
3 years ago
8

What is the value of g on the surface of Saturn? Assume M-Saturn = 5.68×10^26 kg and R-Saturn = 5.82×10^7 m.Choose the appropria

te explanation how such a low value is possible given Saturn's large mass - 100 times that of Earth.A) This low value is possible because the density of Saturn is so low.B) This low value is possible because the magnetic field of Saturn is so weak.C) This low value is possible because the magnetic field of Saturn is so strong.D) This low value is possible because the density of Saturn is so high.
Physics
1 answer:
Likurg_2 [28]3 years ago
6 0

Answer:

Approximately \rm 11.2 \; N \cdot kg^{-1} at that distance from the center of the planet.

Option A) The low value of g near the cloud top of Saturn is possible because of the low density of the planet.

Explanation:

The value of g on a planet measures the size of gravity on an object for each unit of its mass. The equation for gravity is:

\displaystyle \frac{G \cdot M \cdot m}{R^2},

where

  • G \approx 6.67\times 10^{-11}\; \rm N \cdot kg^{-2} \cdot m^2.
  • M is the mass of the planet, and
  • m is the mass of the object.

To find an equation for g, divide the equation for gravity by the mass of the object:

\displaystyle g = \left.\frac{G \cdot M \cdot m}{R^2} \right/\frac{1}{m} = \frac{G \cdot M}{R^2}.

In this case,

  • M = 5.68\times 10^{26}\; \rm kg, and
  • R = 5.82 \times 10^7\; \rm m.

Calculate g based on these values:

\begin{aligned} g &= \frac{G \cdot M}{R^2}\cr &= \frac{6.67\times 10^{-11}\; \rm N \cdot kg^{-2} \cdot m^2\times 5.68\times 10^{26}\; \rm kg}{\left(5.82\times 10^7\; \rm m\right)^2} \cr &\approx 11.2\; \rm N\cdot kg^{-1} \end{aligned}.

Saturn is a gas giant. Most of its volume was filled with gas. In comparison, the earth is a rocky planet. Most of its volume was filled with solid and molten rocks. As a result, the average density of the earth would be greater than the average density of Saturn.

Refer to the equation for g:

\displaystyle g = \frac{G \cdot M}{R^2}.

The mass of the planet is in the numerator. If two planets are of the same size, g would be greater at the surface of the more massive planet.

On the other hand, if the mass of the planet is large while its density is small, its radius also needs to be very large. Since R is in the denominator of g, increasing the value of R while keeping M constant would reduce the value of g. That explains why the value of g near the "surface" (cloud tops) of Saturn is about the same as that on the surface of the earth (approximately 9.81\; \rm N \cdot kg^{-1}.

As a side note, 5.82\times 10^7\rm \; m likely refers to the distance from the center of Saturn to its cloud tops. Hence, it would be more appropriate to say that the value of g near the cloud tops of Saturn is approximately \rm 11.2 \; N \cdot kg^{-1}.

You might be interested in
4. What is the momentum of a 70 kg object traveling at 20 m/s?
Soloha48 [4]

Answer:

1400 units of momentum.

Explanation:

Using the formula p=mv. We can get the momentum using 70*20 =1400 units of momentum

6 0
3 years ago
A 45.0 g hard-boiled egg moves on the end of a spring with force constant 25.0 N/m. Its initial displacement 0.500 m. A damping
leva [86]

Answer:

0.02896 kg/s

Explanation:

A_1 = Initial displacement = 0.5 m

A21 = Final displacement = 0.1 m

t = Time taken = 0.5 s

m = Mass of object = 45 g

Displacement is given by

x=Ae^{-\dfrac{b}{2m}t}cos(\omega t+\phi)

At maximum displacement

cos(\omega t+\phi)=1

\\\Rightarrow A_2=A_1e^{-\dfrac{b}{2m}t}\\\Rightarrow \dfrac{A_1}{A_2}=e^{\dfrac{b}{2m}t}\\\Rightarrow ln\dfrac{A_1}{A_2}=\dfrac{b}{2m}t\\\Rightarrow b=\dfrac{2m}{t}\times ln\dfrac{A_1}{A_2}\\\Rightarrow b=\dfrac{2\times 0.045}{5}\times ln\dfrac{0.5}{0.1}\\\Rightarrow b=0.02896\ kg/s

The magnitude of the damping coefficient is 0.02896 kg/s

6 0
3 years ago
Scalars are used to solve projectile motion problems because they allow the analysis of one direction at a time for two-dimensio
Korolek [52]
The statement is false. Vectors are used to solve projectile motion problems because they allow the analysis of one direction at a time for two-dimensional motion. Scalar quantities can be used to analyze linear motion problem, but not projectile motion.
4 0
3 years ago
Rachel hits a golf ball into the air. What type of motion is the ball's path?
sladkih [1.3K]

Answer:

omg

the ground is BREAKING

Explanation:

5 0
3 years ago
What are three ways that you know an object has accelerated
ivann1987 [24]

An object has undergone acceleration if ...

-- it's moving faster than it was before
or
-- it's moving slower than it was before
or
-- it's moving in a different direction that it was before.

3 0
4 years ago
Other questions:
  • A horse stands 184 cm at the shoulder. The horse is all of the following EXCEPT ____________ tall. A) 1.84 m B) 18.4 dm C) 184,0
    14·1 answer
  • The law of conservation of mass states that in a chemical reaction matter is not created or destroyed true or false
    5·1 answer
  • An instructor’s laser pointer produces a beam of light with a circular cross section of diameter 0.900 mm and a total power outp
    8·1 answer
  • A red car and a blue car can move along the same straight one-lane road. Both cars can move only at one speed when they move (e.
    9·1 answer
  • If the frequency of an electromagnetic wave is too high or too low. A) It cannot be seen. B) It is no longer a wave. C) It is no
    5·1 answer
  • I need help on question 6
    5·1 answer
  • a motorcycle is trying to leap across the canyon by driving horizontally off a cliff 38 m/s. Ignoring air resistance, find the s
    11·1 answer
  • Descibe the real-world examples of Newton's third lawthat were idenified in "Applications of Newton's Laws."
    15·2 answers
  • Why is water considered a good solvent?
    10·2 answers
  • Write the first law of motion​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!