1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aksik [14]
3 years ago
6

Variable y varies directly with variable x, and y = 5 when x = 8.

Mathematics
2 answers:
Keith_Richards [23]3 years ago
7 0
8 _ _ _ _ _ 5 
x _ _ _ _ _ 15

8 / x = 5 / 15 ;
x = ( 8 × 15 ) / 5 ;
x = 120 / 5 ;
x = 24 ;
qaws [65]3 years ago
4 0
Y = kx

Plug in what we know:

5 = k(8)

5 = 8k

Divide 8 to both sides:

k = 0.625

Plug this back into the equation along with y = 15:

y = kx

15 = 0.625x

Divide 0.625 to both sides:

x = 24
You might be interested in
Can someone please help me out with my grades are bad
dolphi86 [110]

Answer:

Step-by-step explanation:

In a dilatation for find the new coordinates we have to multiply the initial value for the the scale factor

A’(-3, 12)

B’(9,6)

C’(-9,-3)

so the general rule is:

(x,y) -> (3x, 3y)

7 0
3 years ago
Determine the equation of the circle graphed below .
Volgvan

Answer:

(x+1)^2 + (y-7)^2 = 2^2

Step-by-step explanation:

The center of the circle is at (-1,7) and the radius from the center to the edge is 2, so the equation should look like (x-h)^2 + (y-k)^2 = r^2

You would flip the signs of the center so that when you solve the equation it ends up in the correct place.

3 0
3 years ago
Can anyone help me out with this?​
bogdanovich [222]

{\large{\textsf{\textbf{\underline{\underline{Question \: 1 :}}}}}}

\star\:{\underline{\underline{\sf{\purple{Solution:}}}}}

\bullet \sf \:   {(a + b)}^{ab}

<u>Putting value of a as 3 and b as -2, we get</u><u> </u><u>:</u>

\longrightarrow \sf \:   {( 3 +  (- 2))}^{3 \times  - 2}

\longrightarrow \sf \:   {( 3 - 2)}^{3 \times  - 2}

\longrightarrow \sf \:   {( 1)}^{ - 6}

• <u>Using negative Exponents Law</u>

\longrightarrow \sf   \dfrac{1}{ {1}^{6} }

\longrightarrow \sf   \dfrac{1}{ 1 \times 1 \times 1 \times 1 \times 1 \times 1 }

\longrightarrow \sf   \dfrac{1}{  1 }

\longrightarrow \sf   \purple{1}

{\large{\textsf{\textbf{\underline{\underline{Question \: 2 :}}}}}}

\star\:{\underline{\underline{\sf{\red{Solution:}}}}}

\bullet  \sf \:  \dfrac{ {8}^{ - 1} \times   {5}^{3} }{ {2}^{ - 4}}

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times  \dfrac{1}{{2}^{ - 4}}

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:  {8}^{ - 1} \times   {5}^{3}  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times   5 \times 5 \times 5  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   {2}^{4}

\longrightarrow  \sf \:  {8}^{ - 1} \times 125  \times   2 \times 2 \times 2 \times 2

<u>• Using negative Exponents Law</u>

\longrightarrow  \sf \:   \dfrac{1}{ \cancel{8}_{4}} \times 125  \times   \cancel{2}_{1} \times 2 \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel4_{2}} \times 125  \times   \cancel{2}_{1}  \times 2 \times 2

\longrightarrow  \sf \:   \dfrac{1}{ \cancel2} \times 125  \times   \cancel{2}   \times 2

\longrightarrow  \sf \:    125  \times 2

\longrightarrow  \sf \red{  250}

{\large{\textsf{\textbf{\underline{\underline{Question \: 3 :}}}}}}

\star\:{\underline{\underline{\sf{\green{Solution(1):}}}}}

\bullet \sf  \dfrac{ \sqrt{32} +  \sqrt{48}  }{ \sqrt{8} +  \sqrt{12}  }

\longrightarrow \sf  \dfrac{ \sqrt{4 \times 4 \times 2} +  \sqrt{4 \times 4 \times 3}  }{ \sqrt{2 \times 2 \times 2} +  \sqrt{2 \times 2 \times 3}  }

\longrightarrow \sf  \dfrac{ \sqrt{  {4}^{2}   \times 2} +  \sqrt{ {4}^{2}  \times 3}  }{ \sqrt{ {2}^{2}  \times 2} +  \sqrt{ {2}^{2}  \times 3}  }

\longrightarrow \sf  \dfrac{ 4\sqrt{    2} + 4 \sqrt{  3}  }{ 2\sqrt{  2} +2  \sqrt{  3}  }

\longrightarrow \sf  \dfrac{ \cancel{ 4}_{2}(\sqrt{    2} +  \sqrt{  3})  }{  \cancel{2}(\sqrt{  2} + \sqrt{  3})  }

\longrightarrow \sf  \dfrac{ 2  \: \cancel{(\sqrt{    2} +  \sqrt{  3}) } }{  \cancel{(\sqrt{  2} + \sqrt{  3})}  }

\longrightarrow \sf   \green{2}

\star\:{\underline{\underline{\sf{\blue{Solution(2):}}}}}

\bullet  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{80} +  \sqrt{48}  - \sqrt{45}  -  \sqrt{27}   }

\begin{gathered}  \longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{4 \times 4 \times 5} +  \sqrt{4 \times 4 \times 3}  - \sqrt{3 \times 3 \times 5}  -  \sqrt{3 \times 3 \times 3}   } \end{gathered}

\begin{gathered}\longrightarrow  \sf \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{ {4}^{2}  \times 5} +  \sqrt{ {4}^{2}  \times 3}  - \sqrt{ {3}^{2}  \times 5}  -  \sqrt{ {3}^{2}  \times 3}   } \end{gathered}

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5} + 4 \sqrt{   3}  - 3\sqrt{    5}  -  3\sqrt{  3}   }

\longrightarrow \sf  \dfrac{ \sqrt{5}  +  \sqrt{3} }{4 \sqrt{  5}   - 3\sqrt{    5} + 4 \sqrt{   3} -  3\sqrt{  3}   }

\longrightarrow  \sf \dfrac{ \cancel{ \sqrt{5}  +  \sqrt{3}} }{ \cancel{\sqrt{    5}  +   \sqrt{  3}   } }

\longrightarrow   \blue{1}

{\large{\textsf{\textbf{\underline{\underline{Answers :}}}}}}

• Question 1 - \purple{1}

• Question 2 - \red{250}

• Question 3(1) - \green{2}

• Question 3(2) - \blue{1}

{\large{\textsf{\textbf{\underline{\underline{ Concept \: :}}}}}}

<u>★</u><u> </u><u>Negative</u><u> Exponents Law -</u>

\bullet  \sf \:  {a}^{ - m}  =  \dfrac{1}{ {a}^{m} }

★ \sqrt{32} can be written as 4 \sqrt{2}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{8} can be written as 2 \sqrt{2}

‣ \sqrt{12} can be written as 2 \sqrt{3}

‣ \sqrt{80} can be written as 4 \sqrt{5}

‣ \sqrt{48} can be written as 4 \sqrt{3}

‣ \sqrt{45} can be written as 3 \sqrt{5}

‣ \sqrt{27} can be written as 3 \sqrt{3}

★ <u>During Addition and Subtraction</u>

• minus (-) minus (-) gives plus (+)

• minus (-) plus (+) gives minus (-)

• plus (+) minus (-) gives minus (-)

• plus (+) plus (+) gives plus (+)

• Also the sign of the resultant term depends upon the sign of the largest number.

{\large{\textsf{\textbf{\underline{\underline{ Note \: :}}}}}}

• Swipe to see the full answer.

\begin{gathered} {\underline{\rule{330pt}{3pt}}} \end{gathered}

5 0
2 years ago
The table below shows the possible outcomes of rolling a six-sided number cube and flipping a coin.
lesantik [10]
What’s the answer plsssssssssssssss
3 0
3 years ago
Read 2 more answers
3.24 as a mixed number
UkoKoshka [18]
3 6/25 would be your answer!!!
8 0
3 years ago
Other questions:
  • Determine the values of the variable for which the expression is defined as a real number. (Enter your answer using interval not
    5·1 answer
  • 20. Determine the rate of change for the following equation on the given interval.
    15·2 answers
  • Several factors influence the size of the F-ratio. For each of the following, indicate whether it would influence the numerator
    12·1 answer
  • HELP WILL GIV YOU 30 POINTS BUT HELP ME
    5·1 answer
  • Billy must decide whether he will stay home or go to a friend’s house. If he stays home, he can watch tv or play ps4. If he goes
    15·1 answer
  • Olivia paid $28 for a pair of boots that sold regularly for $80. What
    8·1 answer
  • HELP PLEASE HELP I WILL MARK BRAINLEST 3. Elena types approximately 50 words per
    6·2 answers
  • 14 over 15 rounded to the nearest tenth
    13·1 answer
  • Is the Port Townsend sales price ever<br> double the Seattle sales price?
    13·1 answer
  • There is enough fencing to surround the dog's play yard. The yard must have a perimeter of n more than 38 feet. The length of th
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!