So I'm assuming that you're taking Calculus.
The first thing you want to do is take the integral of f(x)...
Use the power rule to get:
4X^2-13X+3.
Now solve for X when f(x)=0. This is because when the slope is 0, it is either a minimum or a maximum(I'm assuming you know this)
Now you get X=0.25 and X=3. Since we are working in the interval of (1,4), we can ignore 0.25
Thus our potential X values for max and min are X=1,X=4,X=3(You don't want to forget the ends of the bounds!)
Plugging these value in for f(x), we get
f(1)=2.833
f(3)=-8.5
f(4)=1.667
Thus X=1 is the max and X=3 is the min.
So max:(1,2.833)
min:(3,-8.5)
Hope this helps!
The attachment is the graph of the equation y - 1 = 2 / 3 (x - 3)
Answer:
Just use long subtraction by expanding the decimal places of the whole number. This is done by adding a point, and enough zeros to it to match the number of decimal digits in the other number (digits after the decimal point).
12345678
i.e: 5 - 2.48374827, 2.48374827 has 8 decimal digits, so add 8 zeros after the point.
=
1 1 1 1 1 1 1
5.00000000
-
2.48374827
_______________
2.51625173
7 + 3 = <u>1</u>0, 7 + 2 + <u>1</u> = <u>1</u>0, 8 + 1 + <u>1</u>= <u>1</u>0, 5 + 4 + <u>1</u> = <u>1</u>0, 2 + 7 + <u>1</u> = <u>1</u>0, 3 + 6 + <u>1</u> = <u>1</u>0, 1 + 8 + <u>1</u> = <u>1</u>0, 5 + 4 + <u>1</u> = <u>1</u>0, 2 + 2 + <u>1</u> = <u>5</u><u> </u><u>:</u><u> </u>5.00000000
This is basically borrowing a group of 10s which are the same as 1s in the next decimal place up.
For each digit except the first to the right, let 10 subtract that number from it and minus 1 since the 1 is carried over.
Answer:
it is D
Step-by-step explanation: