Answer:

Step-by-step explanation:
Given :
Two points are given in graph (-6, -4) and {7, 5).
The point-slope form of the equation of a straight line is:
------------(1)
Let
and 
The slope of the line 
Put all known value in above equation.



The slope of the line 
We know m, and also know that
, so we put these value in equation 1.

Therefore, the equation of the line is
.
Let's make things easier by simplifying things.
y = 8 and x = 3 is more likely to be understood as a ratio. So for the rest of the answer, their relationship would be represented as y:x
Thus: y:x = 8:3
The problem would be finding y when x = 45
Let us proceed on using the previous equation and substitute x with 45 which would look like this:
y:45 = 8:3
Ratios can also be expressed as fractions which would make things more understandable and easy to solve. So the new form of our equation would be like this:
y/45 = 8/3
Then we proceed with a cross multiplication where the equation becomes like as what is shown below:
3y = 45 * 8
From there, you can solve it by multiplying 45 and 8 then dividing the product with 3 to get y
3y = 360
y = 120
Another way of looking at the problem, especially problems like these, is to take the whole question or statement as an equation. it would probably look like this:
y = 8 when x = 3 : y = ? when x = 45
This would make you understand what approach you can use to solve the given problem.
Answer:
the first one
Step-by-step explanation:
A method that always works is to find the slope of the given line, then find the negative reciprocal of that. Your result will be the slope of the perpendicular line. Using this slope and the given point, fill in the parameters of the point-slope form of the equation of a line.
For m = slope of given line and (h, k) = given point, the perpendicular line will be
y = (-1/m)(x -h) +k
Often, this equation can be simplified to another appropriate form, such as slope-intercept form (y = mx+b) or standard form (ax+by=c).
_____
The slope of a given line can be found by solving its equation for y. The slope is the coefficient of x in that solution. If the given line is characterized by two points, (x1, y1) and (x2, y2), then its slope is m = (y2-y1)/(x2-x1).
In the unusual case where the given line is vertical (x=<some constant>), the slope of the perpendicular line is zero, and the line you want becomes y=k.