Answer:
im not a brain wiz but i think 20
Explanation:
Answer:
Near the boiling point of the solvent
Explanation:
The process of recrystallization is hinged on the fact that the amount of solute that can be dissolved by a solvent increases with temperature. The process involves creation of a solution by dissolving a solute in a solvent at or near its boiling point. At the boiling point of the solvent, the solute has a greater solubility in the solvent; not much volume of the hot solvent is required to dissolve the solute.
Before the solution is later cooled, you can now filter out insoluble impurities from the hot solvent. The quantity of the original solute drops appreciably because impurities have been removed. At this lower temperature, the solution becomes saturated and the solute can no longer be held in solution hence it forms pure crystals of solute, which can be recovered.
Recrystallization must be carried out using the proper solvent. The solute must be relatively insoluble in the solvent at room temperature but more soluble in the solvent at elevated temperature.
Answer:
It is involved in the conversion of ADP to ATP
Explanation:
Most enzymes in biological systems function by reversible uptake and release of hydrogen in redox processes. The enzyme that catalyses the conversion of ADP to ATP also works by hydrogen ion transfer. Hence H+ is required in photosynthesis for the conversion of ADP to ATP
The mass of oxygen collected from the thermal decomposition of potassium chlorate at a temperature of 297 K and 762 mmHg is 0.16 g
<h3>How to determine the mole of oxygen produced </h3>
We'll begin by obtaining the number of mole of oxygen gas produced from the reaction. This can be obtained by using the ideal gas equation as illustrated below:
- Volume (V) = 0.128 L
- Temperature (T) = 297 K
- Pressure (P) = 762 – 22.4 = 739.6 mmHg
- Gas constant (R) = 62.363 mmHg.L/Kmol
- Number of mole (n) =?
PV = nRT
739.6 × 0.128 = n × 62.363 × 297
Divide both sides by 62.363 × 297
n = (739.6 × 0.128) / (62.363 × 297)
n = 0.0051 mole
Thus, the number of mole of oxygen gas produced is 0.0051 mole
<h3>How to determine the mass of oxygen collected</h3>
Haven obtain the number of mole of oxygen gas produced, we can determine the mass of the oxygen produced as follow:'
- Mole = 0.0051 mole
- Molar mass of oxygen gas = 32 g/mole
- Mass of oxygen =?
Mole = mass / molar mass
0.0051 = mass of oxygen / 32
Cross multiply
Mass of oxygen = 0.0051 × 32
Mass of oxygen = 0.16 g
Thus, we can conclude that the mass of oxygen gas collected is 0.16 g
Learn more about ideal gas equation:
brainly.com/question/4147359
#SPJ1
Stardust atoms are heavier elements, the percentage of star mass in our body is much more impressive. Most hydrogen in our body floats around in the form of water .