<span>The ball with an initial velocity of 2 m/s rebounds at 3.6 m/s
The ball with an initial velocity of 3.6 m/s rebounds at 2 m/s
There are two principles involved here
Conservation of momentum and conservation of energy.
I'll use the following variables
a0, a1 = velocity of ball a (before and after collision)
b0, b1 = velocity of ball b (before and after collision)
m = mass of each ball.
For conservation of momentum, we can create this equation:
m*a0 + m*b0 = m*a1 + m*b1
divide both sides by m and we get:
a0 + b0 = a1 + b1
For conservation of energy, we can create this equation:
0.5m(a0)^2 + 0.5m(b0)^2 = 0.5m(a1)^2 + 0.5m(b1)^2
Once again, divide both sides by 0.5m to simplify
a0^2 + b0^2 = a1^2 + b1^2
Now let's get rid of a0 and b0 by assigned their initial values. a0 will be 2, and b0 will be -3.6 since it's moving in the opposite direction.
a0 + b0 = a1 + b1
2 - 3.6 = a1 + b1
-1.6 = a1 + b1
a1 + b1 = -1.6
a0^2 + b0^2 = a1^2 + b1^2
2^2 + -3.6^2 = a1^2 + b1^2
4 + 12.96 = a1^2 + b1^2
16.96 = a1^2 + b1^2
a1^2 + b1^2 = 16.96
The equation a1^2 + b1^2 = 16.96 describes a circle centered at the origin with a radius of sqrt(16.96). The equation a1 + b1 = -1.6 describes a line with slope -1 that intersects the circle at two points. Those points being (a1,b1) = (-3.6, 2) or (2, -3.6). This is not a surprise given the conservation of energy and momentum. We can't use the solution of (2, -3.6) since those were the initial values and that would imply the 2 billiard balls passing through each other which is physically impossible. So the correct solution is (-3.6, 2) which indicates that the ball going 2 m/s initially rebounds in the opposite direction at 3.6 m/s and the ball originally going 3.6 m/s rebounds in the opposite direction at 2 m/s.</span>
Answer:
the answer is c. Havanna's soccer ball has 9 times the kinetic energy, because it travels at 3 times the speed
Explanation:
Complete Question:
Given
at a point. What is the force per unit area at this point acting normal to the surface with
? Are there any shear stresses acting on this surface?
Answer:
Force per unit area, 
There are shear stresses acting on the surface since 
Explanation:
![\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right]](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2612%2613%5C%5C12%2611%2615%5C%5C13%2615%2620%5Cend%7Barray%7D%5Cright%5D)
equation of the normal,
![\b n = \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cb%20n%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Traction vector on n, 
![T_n = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=T_n%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2612%2613%5C%5C12%2611%2615%5C%5C13%2615%2620%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
![T_n = \left[\begin{array}{ccc}\frac{23}{\sqrt{2} }\\0\\\frac{27}{\sqrt{33} }\end{array}\right]](https://tex.z-dn.net/?f=T_n%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B27%7D%7B%5Csqrt%7B33%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)

To get the Force per unit area acting normal to the surface, find the dot product of the traction vector and the normal.


If the shear stress,
, is calculated and it is not equal to zero, this means there are shear stresses.

![\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - 28( (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z)\\\\\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - [ (28/ \sqrt{2} ) \b e_x + (28/ \sqrt{2}) \b e_z]\\\\\tau = \frac{-5}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{5}{\sqrt{2} } \b e_z](https://tex.z-dn.net/?f=%5Ctau%20%3D%20%20%5B%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B33%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z%5D%20-%2028%28%20%281%2F%20%5Csqrt%7B2%7D%20%29%20%5Cb%20e_x%20%2B%20%281%2F%20%5Csqrt%7B2%7D%29%20%5Cb%20e_z%29%5C%5C%5C%5C%5Ctau%20%3D%20%20%5B%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B33%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z%5D%20-%20%5B%20%2828%2F%20%5Csqrt%7B2%7D%20%29%20%5Cb%20e_x%20%2B%20%2828%2F%20%5Csqrt%7B2%7D%29%20%5Cb%20e_z%5D%5C%5C%5C%5C%5Ctau%20%3D%20%20%5Cfrac%7B-5%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B5%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z)

Since
, there are shear stresses acting on the surface.
Answer:
x = 1.018 m
Explanation:
given,
height of man = 190 cm
= 1.9 m
scale reading on left = 450 N
scale reading on the right = 390 N
Let center of gravity of man be x distance from feet, feet is on right side.
For system to be in equilibrium moment about center should be equal to zero.
∑M = 0
now,
450(1.9 - x ) - 390 × x = 0
450(1.9 - x ) = 390 × x
855 - 450 x = 390 x
840 x = 855

x = 1.018 m
hence, point of center of gravity from feet is equal to x = 1.018 m