Answer:
M = 222 fringes
Explanation:
given
λ = 559 n m = 559 × 10⁻⁹ m
radius = 0.026 mm = 0.026 ×10⁻³ m
length of the glass plate = 22.1 ×10⁻² m
using relation


= 221.79
= 221 (approx.)
hence no of bright fringe
M = m + 1
= 221 +1
M = 222 fringes
Answer:
Explanation:
Given
Initial speed 
distance traveled before coming to rest 
using equation of motion

where v=final velocity
u=initial velocity
a=acceleration
s=displacement

for 
using same relation we get

divide 1 and 2 we get


So a distance if 213.32 ft is required to stop the vehicle with 80 mph speed
//////Correct answer is C.///////
The figure shows the arrangement of system
The velocity of boat can be resolved in to two
Horizontal component = vcos θ = 2.50 cos 45 = 1.768 m/s
Vertical component = vsin θ = 2.50 sin 45 = 1.768 m/s
Due to horizontal component the boat arrive arrives upstream,
Total horizontal velocity = 1.768 - Vr, where Vr is the velocity of river.
Total time taken to cross the river = width of river/ Vertical component of velocity
t = 285/1.768 = 161.20 seconds
So 118 meter is traveled at a velocity of 1.768-Vr in 161.20 seconds
That is 118 = (1.768-Vr)*161.20
1.768 - Vr =0.732
Vr = 1.036 m/s
So velocity of river flow =1.036 m/s
The change in potential energy when the block falls to ground is -480J.
The maximum change in kinetic energy of the ball is 480 J.
The initial kinetic energy of the ball is 0 J.
The final kinetic energy of the ball is 0.148J.
The initial potential energy of the ball is 0.187 J.
The final potential energy of the ball is 0 J.
The work done by the air resistance is 0.039 J.
<h3>Change in potential energy when the block falls to ground</h3>
ΔP.E = -mgh
ΔP.E = -Wh
ΔP.E = - 40 x 12
ΔP.E = -480 J
<h3>Maximum change in kinetic energy of the ball</h3>
ΔK.E = - ΔP.E
ΔK.E = - (-480 J)
ΔK.E = 480 J
<h3>Initial kinetic energy of the ball</h3>
K.Ei = 0.5mv²
where;
- v is zero since it is initially at rest
K.Ei = 0.5m(0) = 0
<h3>Final kinetic energy</h3>
K.Ef = 0.5mv²
K.Ef = 0.5(0.0091)(5.7)²
K.Ef = 0.148 J
<h3>Initial potential energy of the ball</h3>
P.Ei = mghi
P.Ei = 0.0091 x 9.8 x 2.1
P.Ei = 0.187 J
<h3>Final potential energy</h3>
P.Ef = mghf
P.Ef = 0.0091 x 9.8 x 0
P.Ef = 0
<h3>Work done by the air resistance</h3>
W = ΔE
W = P.E - K.E
W = 0.187 J - 0.148 J
W = 0.039 J
Learn more about potential energy here: brainly.com/question/1242059
#SPJ1
<h3 />