(a) 
The energy levels of an electron in a box are given by

where
n is the energy level
is the Planck constant
is the mass of the electron
is the size of the box
Substituting n=1, we find the energy of the ground state:

Converting into MeV,

Substituting n=2, we find the energy of the first excited state:

Converting into MeV,

Substituting n=3, we find the energy of the second excited state:

Converting into GeV,

(b) 
The energy of the emitted radiation is equal to the energy difference between the two levels, so:

And the energy of the electromagnetic radiation is

where c is the speed of light; so, re-arranging the formula, we find the wavelength:

(c) 
The energy of the emitted radiation is equal to the energy difference between the two levels, so:

Using the same formula as before, we find the corresponding wavelength:

(d) 
The energy of the emitted radiation is equal to the energy difference between the two levels, so:

Using the same formula as before, we find:

Answer:
How does the drink content affect an individual's blood pressure?
Explanation:
In every experiment using the scientific method, an observation lays the foundation of that experiment. A problem must be observed, which then leads to asking a SCIENTIFIC QUESTION in order to investigate. A scientific question must include the variable being changed called INDEPENDENT VARIABLE and the variable being measured called DEPENDENT VARIABLE.
In this experimental procedure or set up,
- Group 1 drinks 500 mL of coffee a day.
- Group 2 drink 500 mL of tea a day,
- Group 3 is a control group i.e no drink
At the end of 60 days all participants
blood pressure is tested.
This set up indicates that the variable being changed (independent) is the DRINK CONTENT while the variable being measured (dependent) is the BLOOD PRESSURE. Hence, these variables serve as the template to ask a scientific question which goes thus:
HOW DOES THE DRINK CONTENT AFFECT AN INDIVIDUAL'S BLOOD PRESSURE?
This scientific question relates how the independent variable (drink) causes the dependent variable to respond (blood pressure).
1). The equation is: (speed) = (frequency) x (wavelength)
Speed = (256 Hz) x (1.3 m) = 332.8 meters per second
2). If the instrument is played louder, the amplitude of the waves increases.
On the oscilloscope, they would appear larger from top to bottom, but the
horizontal size of each wave doesn't change.
If the instrument is played at a higher pitch, then the waves become shorter,
because 'pitch' is directly related to the frequency of the waves, and higher
pitch means higher frequency and more waves in any period of time.
If the instrument plays louder and at higher pitch, the waves on the scope
become taller and there are more of them across the screen.
3). The equation is: Frequency = (speed) / (wavelength)
(Notice that this is exactly the same as the equation up above in question #1,
only with each side of that one divided by 'wavelength'.)
Frequency = 300,000,000 meters per second / 1,500 meters = 200,000 per second.
That's ' 200 k Hz ' .
Note:
I didn't think anybody broadcasts at 200 kHz, so I looked up BBC Radio 4
on-line, and I was surprised. They broadcast on several different frequencies,
and one of them is 198 kHz !
Answer:
If you mean Lewis dot diagrams, aka electron-dot diagrams, then these are diagrams that show the bonding between atoms of a molecule, and the lone pairs of electrons that may exist in the molecule.
Explanation: