Answer:
(2x-3)(x-4)
Step-by-step explanation:
Answer:
The probability that the sample proportion will differ from the population proportion by greater than 0.03 is 0.009.
Step-by-step explanation:
According to the Central limit theorem, if from an unknown population large samples of sizes n > 30, are selected and the sample proportion for each sample is computed then the sampling distribution of sample proportion follows a Normal distribution.
The mean of this sampling distribution of sample proportion is:

The standard deviation of this sampling distribution of sample proportion is:

As the sample size is large, i.e. <em>n</em> = 492 > 30, the central limit theorem can be used to approximate the sampling distribution of sample proportion by the normal distribution.
The mean and standard deviation of the sampling distribution of sample proportion are:

Compute the probability that the sample proportion will differ from the population proportion by greater than 0.03 as follows:

![=P(|Z|>2.61)\\\\=1-P(|Z|\leq 2.61)\\\\=1-P(-2.61\leq Z\leq 2.61)\\\\=1-[P(Z\leq 2.61)-P(Z\leq -2.61)]\\\\=1-0.9955+0.0045\\\\=0.0090](https://tex.z-dn.net/?f=%3DP%28%7CZ%7C%3E2.61%29%5C%5C%5C%5C%3D1-P%28%7CZ%7C%5Cleq%202.61%29%5C%5C%5C%5C%3D1-P%28-2.61%5Cleq%20Z%5Cleq%202.61%29%5C%5C%5C%5C%3D1-%5BP%28Z%5Cleq%202.61%29-P%28Z%5Cleq%20-2.61%29%5D%5C%5C%5C%5C%3D1-0.9955%2B0.0045%5C%5C%5C%5C%3D0.0090)
Thus, the probability that the sample proportion will differ from the population proportion by greater than 0.03 is 0.009.
Answer: 1
Explanation:
1 to any power will always be 1
The answer for this is -1x.
Answer:
Area = 228 m²
Perimeter = 60 m
Step-by-step explanation:
The figure given shows a rectangle that has a cut triangular portion.
✔️Area of the figure = area of rectangle - area of the triangular cut portion
= L*W + ½*bh
Where,
L = 20 m
W = 12 m
b = 20 - (8 + 8) = 4 m
h = 6 m
Plug in the values
Area = 20*12 - ½*4*6
Area = 240 - 12
Area = 228 m²
✔️Perimeter = perimeter of rectangle - base of the triangular cut portion
= 2(L + W) - b
L = 20 m
W = 12 m
b = b = 20 - (8 + 8) = 4 m
Plug in the values
Perimeter = 2(20 + 12) - 4
= 2(32) - 4
= 64 - 4
Perimeter = 60 m