Answer:
A
Explanation:
The dead matter from organisms such as plants and animals that die need to be recycled so the nutrients in the matter are released and used up by other organisms. This is how sustainability is achieved in ecosystems through a cyclical nature of nutrients flow. Decomposition of the dead matter is done by decomposers such as fungi and bacteria. Without them, the dead matter would accumulate while the soil would lack nutrients for plants to grow and for other bacteria to utilize for energy. This would affect the rest of the food chain/web causing the ecosystem to collapse.
The answer is NO. This is because different environments require different adaptations. A desirable trait in one environment may be inconsequential or detrimental in another environment. This is the reason also why evolution is continuous as natural selection acts on traits of a population to ensure desirable traits are retained with changes in the environment in a dynamic world.
Explanation:
Wind energy, or wind power, is created using a wind turbine, a device that channels the power of the wind to generate electricity. The wind blows the blades of the turbine, which are attached to a rotor. The rotor then spins a generator to create electricity . Wind energy is a renewable energy source that is clean and has very few environmental challenges. Wind power actually starts with the Sun. In order for the wind to blow, the Sun first heats up a section of land along with the air above it. That hot air rises since a given volume of hot air is lighter than the same volume of cold air. Cooler air then rushes in to fill the void left by that hot air and voila: a gust of wind. The Office of Energy Efficiency and Renewable Energy describes a wind turbine as “the opposite of a fan.” Simply stated, the turbine takes the energy in that wind and converts it into electricity. So how does it do that? First, the wind applies pressure on the long slender blades, usually 2 or 3 of them, causing them to spin, much like the wind pushes a sailboat along its path through the water. The spinning blades then cause the rotor, or the conical cap on the turbine, and an internal shaft to spin as well at somewhere around 30 – 60 revolutions per minute. The ultimate goal is to spin an assembly of magnets in a generator which will, well, generate voltage in a coil of wire thanks to electromagnetic induction. Generators require faster revolutions, however, so a gear box typically connects this lower speed shaft to a higher speed shaft by increasing the spin rate to around 1000 to 1800 revolutions per minute. These gear boxes are costly as well as heavy, so engineers are looking to design more “direct-drive” generators that can work at the lower speeds.
<span>i think Comparative morphology
i could be wrong tho</span>
Water, Sunlight energy, and CO2(carbon dioxide)