The wording of your question doesn't quite make sense, but a mole of an element has the same mass in grams as a single atom of that element has in amu. The mole is defined as 6.02 x10^22 things, whether they be atoms or molecules or even moles! 6.02x10^22 atoms of carbon has a mass of 12.01 g, and a single atom of carbon has a mass of 12.01 amu. Hope this helps!
2H₂(g) + O₂(g) ⇄ 2H₂O(l)
Δngas = 0 - (2 +1)
= -3
<h3>
What is Δngas?</h3>
The number of moles of gas that move from the reactant side to the product side is denoted by the symbol ∆n or delta n in this equation.
Once more, n represents the growth in the number of gaseous molecules the equilibrium equation can represent. When there are exactly the same number of gaseous molecules in the system, n = 0, Kp = Kc, and both equilibrium constants are dimensionless.
<h3>
Definition of equilibrium</h3>
When a chemical reaction does not completely transform all reactants into products, equilibrium occurs. Many chemical processes eventually reach a state of balance or dynamic equilibrium where both reactants and products are present.
Learn more about Equilibrium
brainly.com/question/11336012
#SPJ4
apparently colorless light, for example ordinary daylight. It contains all the wavelengths of the visible spectrum at equal intensity.
Answer:
The 12L helium tank pressurized to 160 atm will fill <em>636 </em>3-liter balloons
Explanation:
It is possible to answer this question using Boyle's law:

Where P₁ is the pressure of the tank (160atm), V₁ is the volume of the tank (12L), P₂ is the pressure of the balloons (1atm, atmospheric pressure) And V₂ is the volume this gas will occupy at 1 atm, thus:
160atm×12L = 1atm×V₂
V₂ = 1920L
As the tank will never be empty, the volume of the gas able to fill balloons is the total volume minus 12L, thus the volume of helium able to fill balloons is:
1920L - 12L = 1908L
1908L will fill:
1908L×
= <em>636 balloons</em>
<em></em>
I hope it helps!