The options are;
A) The skater experiences acceleration both while skating in a straight line and while making her turn.
B) Because the skater does not change her direction or speed, she does not experience acceleration.
C) The skater only experiences acceleration when she is turning.
D) The skater only experiences acceleration while skating in a straight line.
Answer:
A: The skater experiences acceleration both while skating in a straight line and while making her turn
Explanation:
We are told that She speeds up on the straight portion of the rink. This means that she experienced an acceleration since the speed was not constant but gradually increasing.
Also, we are told that She slows down near each end of the rink and then turns around. This means that she reduced speed before turning and it means there was also an acceleration as well when making the turn.
Thus, she experience acceleration both in the straight line and when making turn.
Option A is correct
The answer to the question is true.
Answer:On a sloped parking lot
Explanation:
Answer:
The first period is the shortest in the long form of periodic table
Explanation:
the long form or the modern periodic table is based on ht modern periodic law. it has 7 periods and 18 groups. this periodic table is widely used by people all over the world. the chemical and physical properties of the elements can be easily identified due to their classification into groups and periods or their position in the periodic table. the first period is the shortest in the long form of periodic table. there are two elements present, they are- hydrogen(H) and helium (He)
Answer: No reaction occurs
Explanation:.
Spectator ions are defined as the ions which does not get involved in a chemical equation or they are ions which are found on both the sides of the chemical reaction present in ionic form.
The given chemical equation is:

The complete ionic equation is;

The ions which are present on both the sides of the equation are are not involved in net ionic equation.
Hence, there is no net reaction.