Answer:
See explanation.
Explanation:
Hello,
In this case, we could have two possible solutions:
A) If you are asking for the molar mass, you should use the atomic mass of each element forming the compound, that is copper, sulfur and four times oxygen, so you can compute it as shown below:

That is the mass of copper (II) sulfate contained in 1 mol of substance.
B) On the other hand, if you need to compute the moles, forming a 1.0-M solution of copper (II) sulfate, you need the volume of the solution in litres as an additional data considering the formula of molarity:

So you can solve for the moles of the solute:

Nonetheless, we do not know the volume of the solution, so the moles of copper (II) sulfate could not be determined. Anyway, for an assumed volume of 1.5 L of solution, we could obtain:

But this is just a supposition.
Regards.
Answer:
a) 
b) 
d) 
d) 
Explanation:
From the question we are told that:
Moles of N2 
Atmospheric pressure 
Temperature 

Initial heat 
a)
Generally the equation for change in temperature is mathematically given by

Where




b)
Generally the equation for ideal gas is mathematically given by

For v double


Therefore



Total Work-done 



c)
Generally the equation for amount of heat added is mathematically given by



d)
Generally the equation for change in internal energy of the gas is mathematically given by



Answer:
If we assume that there will be enough Hydrogen for the reaction to occur, then there will be 8 moles of NH
Explanation:
The balanced equation will look like this:
4N2 + 4H2 -> 8NH