Looks correct but the second to last I would of put abiotic and biotic factors but I don’t know what’s right for you
Answer:
a) The equilibrium will shift in the right direction.
b) The new equilibrium concentrations after reestablishment of the equilibrium :
![[SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M](https://tex.z-dn.net/?f=%5BSbCl_5%5D%3D%280.370-x%29%20M%3D%280.370-0.0233%29%20M%3D0.3467%20M)
![[SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BSbCl_3%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
![[Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
Explanation:

a) Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
On increase in amount of reactant

If the reactant is increased, according to the Le-Chatlier's principle, the equilibrium will shift in the direction where more product formation is taking place. As the number of moles of
is increasing .So, the equilibrium will shift in the right direction.
b)

Concentration of
= 0.195 M
Concentration of
= 
Concentration of
= 
On adding more
to 0.370 M at equilibrium :

Initially
0.370 M
At equilibrium:
(0.370-x)M
The equilibrium constant of the reaction = 

The equilibrium expression is given as:
![K_c=\frac{[SbCl_3][Cl_2]}{[SbCl_5]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BSbCl_3%5D%5BCl_2%5D%7D%7B%5BSbCl_5%5D%7D)

On solving for x:
x = 0.0233 M
The new equilibrium concentrations after reestablishment of the equilibrium :
![[SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M](https://tex.z-dn.net/?f=%5BSbCl_5%5D%3D%280.370-x%29%20M%3D%280.370-0.0233%29%20M%3D0.3467%20M)
![[SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BSbCl_3%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
![[Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
1) We apply the ideal gas equation:
PV = nRT
n = (21300 x 3/1000) / (8.314 x 323)
n = 0.024
Your answer is correct.
2) Total pressure = Partial pressure of Hydrogen + Partial pressure of water
134.7 = 122.4 + Pw
Pw = 12.3 kPa
Your answer is correct
3) The molar fraction, volume fraction and pressure fraction of gasses are the same thing.
Thus, percentage pressure of Oxygen = 10%
Pressure of Oxygen = 2.04 x 10⁴ x 0.1
= 2.04 x 10³ kPa
Your answer is correct
Well done!
Answer: -2.373 x 10^-24J/K(particles
Explanation: Entropy is defined as the degree of randomness of a system which is a function of the state of a system and depends on the number of the random microstates present.
The entropy change for a particle in a system depends on the initial and final states of a system and is given by Boltzmann equation as
S = k ln(W) .
where S =Entropy
K IS Boltzmann constant ==1.38 x 10 ^-23J/K
W is the number of microstates available to the system.
The change in entropy is given as
S2 -S1 = kln W2 - klnW1
dS = k ln (W2/W1)
where w1 and w2 are initial and final microstates
from the question, W2(final) = 0.842 x W1(initial), so:
= 1.38*10-23 ln (0.842)
=1.38*10-23 x -0.1719
= -2.373 x 10^-24J/K(particles)