Answer:
2m₁m₃g / (m₁ + m₂ + m₃)
Explanation:
I assume the figure is the one included in my answer.
Draw a free body diagram for each mass.
m₁ has a force T₁ up and m₁g down.
m₂ has a force T₁ up, T₂ down, and m₂g down.
m₃ has a force T₂ up and m₃g down.
Assume that m₁ accelerates up and m₂ and m₃ accelerate down.
Sum of the forces on m₁:
∑F = ma
T₁ − m₁g = m₁a
T₁ = m₁g + m₁a
Sum of the forces on m₂:
∑F = ma
T₁ − T₂ − m₂g = m₂(-a)
T₁ − T₂ − m₂g = -m₂a
(m₁g + m₁a) − T₂ − m₂g = -m₂a
m₁g + m₁a + m₂a − m₂g = T₂
(m₁ − m₂)g + (m₁ + m₂)a = T₂
Sum of the forces on m₃:
∑F = ma
T₂ − m₃g = m₃(-a)
T₂ − m₃g = -m₃a
a = g − (T₂ / m₃)
Substitute:
(m₁ − m₂)g + (m₁ + m₂) (g − (T₂ / m₃)) = T₂
(m₁ − m₂)g + (m₁ + m₂)g − ((m₁ + m₂) / m₃) T₂ = T₂
(m₁ − m₂)g + (m₁ + m₂)g = ((m₁ + m₂ + m₃) / m₃) T₂
m₁g − m₂g + m₁g + m₂g = ((m₁ + m₂ + m₃) / m₃) T₂
2m₁g = ((m₁ + m₂ + m₃) / m₃) T₂
T₂ = 2m₁m₃g / (m₁ + m₂ + m₃)
The centripetal force acting on the space shuttle as it orbits Earth is equal to the shuttles momentum
9 × 10²¹ electrons flow through a cross section of the wire in one hour.
<h3>What is the relation between current and charge?</h3>
- Mathematically, current = charge / time
- In S.I. unit, Charge is written in Coulomb and time in second.
<h3>What is the amount of charge flown through a wire for one hour if it carries 0.4 A current?</h3>
- Charge= current × time
- Current= 0.4 A, time = 1 hour= 3600 s
- Charge= 0.4× 3600
= 1440 C
<h3>How many numbers of electrons present in 1440C of charge?</h3>
- One electron= 1.6 × 10^(-19) C
- So, 1440 C = 1440/1.6 × 10^(-19)
= 9 × 10²¹ electrons
Thus, we can conclude that the 9 × 10²¹ electrons flow through a cross section of the wire in one hour.
Learn more about current here:
brainly.com/question/25922783
#SPJ1
Acceleration = force / mass.
A = 100/50 = 2 m/s^2 .
Answer:
The minimum compression is 
Explanation:
From the question we are told that
The mass of the block is 
The spring constant is 
The coefficient of static friction is 
For the the block not slip it mean the sum of forces acting on the horizontal axis is equal to the forces acting on the vertical axis
Now the force acting on the vertical axis is the force due to gravity which is mathematically given as

And the force acting on the horizontal axis is force due to the spring which is mathematically represented as

where x is the minimum compression to keep the block from slipping
Now equating this two formulas and making x the subject

substituting values we have

