Boyle's law is modeled by the equation p1v1=p2v2.
<h2>
<em><u>⇒</u></em>Answer:</h2>
In the standing broad jump, one squats and then pushes off with the legs to see how far one can jump. Suppose the extension of the legs from the crouch position is 0.600 m and the acceleration achieved from this position is 1.25 times the acceleration due to gravity, g . How far can they jump? State your assumptions. (Increased range can be achieved by swinging the arms in the direction of the jump.)
Step-by-Step Solution:
Solution 35PE
This question discusses about the increased range. So, we shall assume that the angle of jumping will be as the horizontal range is maximum at this angle.
Step 1 of 3<
/p>
The legs have an extension of 0.600 m in the crouch position.
So, m
The person is at rest initially, so the initial velocity will be zero.
The acceleration is m/s2
Acceleration m/s2
Let the final velocity be .
Step 2 of 3<
/p>
Substitute the above given values in the kinematic equation ,
m/s
Therefore, the final velocity or jumping speed is m/s
Explanation:
Transvere wave because the direction which the particles are being displaced
Force, the unit is Newton, newton is the force to accelerate a mass. so it should be kg m/s^2
joule (J) is equal to Nm not Ns
the unit of work is J and it is correct.
the unit of power is J/s which is equal to W
the unit of of energy is the same with work, which is J which equivalent to kgm2/s2
The answer is B
As seen on the graph, the bus maintains a 9m/s speed for a majority of the trip to school.