1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sammy [17]
3 years ago
12

Give a few examples/ applications of the universal law of gravitation​

Physics
1 answer:
joja [24]3 years ago
8 0

Answer: 1) It keeps us on the earth so that we can live on the earth and not flying someone else in the atmosphere and space. 2) It maintains the motion of motion of all the planets around the sun and moon around the earth. 3) It pulls all the object towards the earth. 4) The flowing of water in the rivers and seas.

Explanation:

You might be interested in
What are factors that would impede positive parenting and family relationships?
fomenos
•respect •love •comunication •understanding that's it hope this answer ur question
4 0
3 years ago
Read 2 more answers
Which letter represents the position of maximum potential energy of the pendulum
worty [1.4K]
If you mean the SI Unit of GPE, the answer is J for Joules.
if that's not the question being asked, i would need a little more elaboration please :)
4 0
3 years ago
A small 20-kg canoe is floating downriver at a speed of 2 m/s. What is the canoe’s kinetic energy? A. 40 J B. 80 J C. 18 J
rusak2 [61]

A small 20-kg canoe is floating downriver at a speed of 2 m/s. 40 J is the canoe’s kinetic energy.

Answer: Option A

<u>Explanation:</u>

The given canoe has the mass and is being given to move at a speed. Therefore the kinetic energy of the canoe can be calculated using the following method,

Given that mass of the canoe = 20 kg and its speed =1 m/s

As we know that the Kinetic energy has the formula,

\text {Kinetic energy}=\frac{1}{2} \boldsymbol{m} \boldsymbol{v}^{2}

Therefore, substituting the value into the equation, we get,  

K . E .=\frac{1}{2} \times 20 \times 2^{2} = 40 J

4 0
3 years ago
Read 2 more answers
PLEASE ANSWER, I NEED HELP
Scorpion4ik [409]

1) The gravitational force between Ellen and the moon is 1.56\cdot 10^{-3} N

2) The two forces are equal, while the acceleration of the bus is smaller than the acceleration of the bicycle.

Explanation:

1)

The magnitude of the gravitational force between two objects is given by

F=G\frac{m_1 m_2}{r^2}

where

G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2} is the gravitational constant

m_1, m_2 are the masses of the two objects

r is the separation between them

In this problem, we have:

m_1 = 47 kg is the mass of Ellen

m_2 = 7.35\cdot 10^{22} kg is the mass of the moon

r=3.84\cdot 10^8 m is the distance between Ellen and the moon

Substituting, we find the gravitational force between Ellen and the moon:

F=(6.67\cdot 10^{-11})\frac{(47)(7.35\cdot 10^{22})}{(3.84\cdot 10^8)^2}=1.56\cdot 10^{-3} N

2)

We can analyze the forces acting in the collision between the bus and the bicycle by using Newton's third law of motion, which states that:

"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"

Applied to our problem, this means that the force exerted by the bus on the bicycle during the collision (action force) is equal (and opposite) to the force exerted by the bicycle on the bus (reaction force).

Now let's analyze the accelerations of the two vehicles. We can find the acceleration of each vehicle by using Newton's second law:

a=\frac{F}{m}

where

a is the acceleration

F is the force exerted on the vehicle

m is the mass of the vehicle

As we said previously, the force F exerted on each of the two vehicles: so, the acceleration only depends on the mass. In particular, the acceleration is inversely proportional to the mass: therefore, the larger the mass of the vehicle, the smaller the acceleration. This means that the acceleration of the bus is smaller than the acceleration of the bicycle.

Learn more about gravitational force:

brainly.com/question/1724648

brainly.com/question/12785992

And about Newton's third law:

brainly.com/question/11411375

#LearnwithBrainly

6 0
3 years ago
a tire with inner volume of 0.0250m^3 is filled with air at a gauge pressure of 36.0 psi. If the tire valve is opened to the atm
enyata [817]

Answer: Escaped volume = 0.0612m^3

Explanation:

According to Boyle's law

P1V1 = P2V2

P1 = initial pressure in the tire = 36.0psi + 14.696psi = 50.696psi (guage + atmospheric pressure)

P2 = atmospheric pressure= 14.696psi

V1 = volume of tire =0.025m^3

V2 = escaped volume + V1 ( since air still remain in the tire)

V2 = P1V1/P2

V2 = 50.696×0.025/14.696

V2 = 0.0862m^3

Escaped volume = 0.0862 - 0.025 = 0.0612m^3

5 0
2 years ago
Other questions:
  • What color of light in the visible spectrum appears brightest?
    5·1 answer
  • PLEASE HELP!!!
    12·2 answers
  • 1. Solve: When you mix two substances, the heat gained by one substance is equal to the heat
    9·1 answer
  • When a bow is stretched back and an arrow is shot what type of energy conversion has occured
    12·1 answer
  • How far will a bird have traveled in 13 seconds if it maintains a speed of 31 m/s
    9·1 answer
  • After how many seconds does the motorcycle have positive acceleratolion​
    12·1 answer
  • What magnitude charge creates a 32.08 N/C electric field at a point 2.84 m away?
    14·1 answer
  • What kind of destructive force or forces will most likely change the way Stone Mountain looks over the next million years? A) vo
    7·2 answers
  • Give an example of a negative slope.
    14·2 answers
  • The mass of 25cm of ivory was found to be 0.045kg. caculate the density of ivory in SI units​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!