(a) The electron kinetic energy is

which can be converted into Joule by keeping in mind that

So that we find

The kinetic energy of the electron is related to its momentum p by:

where m is the electron mass. Re-arranging the equation, we find

And now we can use De Broglie's relationship to find its wavelength:

where h is the Planck constant.
(b) By using the same procedure of part (a), we can convert the photon energy into Joules:

The energy of a photon is related to its frequency f by:

where h is the Planck constant. Re-arranging the equation, we find

And now we can use the relationship between frequency f, speed of light c and wavelength

of a photon, to find its wavelength:
Answer:

Explanation:
We have,
Mass of Mars is, 
Mass of its moon Phobos, 
Distance between Mars and Phobos, d = 9378 km
It is required to find the gravitational force between Mars and Phobos. The force between two masses is given by

Plugging all values, we get :

So, the gravitational force is
.
Answer:
I hope it is no too late
Explanation:
hmmm,
In a gas, for example, the molecules are traveling in random directions at a variety of speeds - some are fast and some are slow. ... If more energy is put into the system, the average speed of the molecules will increase and more thermal energy or heat will be produced.
Answer:
0.5 m/s²
Explanation:
according to Newton's second law, we are goven a relationship between force, mass and acceleration, with the formula:
F = m×a
F for force
m for mass
a for acceleration
we use the given data and get:
20 = 40×a
we find a=20/40=0.5m/s²
Answer: The hottest star is Archenar( blue) and the coolest star is Betelgeuse
Explanation:
Objects emit radiation that depends exclusively on their temperature. At an ambient temperature, the radiation emitted by an object is in the infrared spectrum (we could only see it with a special camera). If we heat it we will see that it first turns red (whose state we call “red hot”) because it is the lowest and least energetic wavelength of all.
If we continue to heat it, the wavelength that it emits to one with more energy will continue to increase and we will see that it turns yellow and then white. This is a signal that is emitting at all frequencies (but mainly in blue).
If we continue to warm a body that is "white hot", it would emit in the ultraviolet spectrum, with what would become ... black! then we would not see it emits light in the visible spectrum (well, we would see a very faint bluish light corresponding to the tail of the distribution of the spectrum it emits, but the peak of that spectrum would be in the ultraviolet).