Complete question is;
Shoveling snow can be extremely taxing since the arms have such a low efficiency in this activity. Suppose a person shoveling a sidewalk metabolizes food at the rate of 800 W. (The efficiency of a person shoveling is 3%.)
(a) What is her useful power output? (b) How long will it take her to lift 3000 kg of snow 1.20 m? (This could be the amount of heavy snow on 20 m of footpath.) (c) How much waste heat transfer in kilojoules will she generate in the process?
Answer:
A) P_out = 24 W
B) t = 1470 s
C) Q = 1140.72 KJ
Explanation:
We are given;
Input Power; P_in = 800 W
Efficiency; η = 3% = 0.03
A) Formula for efficiency is;
η = P_out/P_in
Making P_out the subject, we have;
P_out = η•P_in
P_out = 0.03 × 800
P_out = 24 W
B) We know that;
Power = work done/time taken
Thus;
P_out = mgh/t
We are given;
m = 3000 kg
h = 1.20 m
Thus, time is;
t = (3000 × 9.8 × 1.2)/24
t = 1470 s
C) amount of heat wasted is calculated from;
Q = (P_in - P_out)t
Q = (800 - 24) × 1470
Q = 1,140,720 J
Q = 1140.72 KJ
Your lungs aren’t the ones that make the sound
Electron configurations:
Ge: [Ar] 3d10 4s2 4p2 => 6 electrons in the outer shell
Br: [Ar] 3d10 4s2 4p5 => 7 electrons in the outer shell
Kr: [Ar] 3d10 4s2 4p6 => 8 electrons in the outer shell
The electron affinity or propension to attract electrons is given by the electronic configuration. Remember that the most stable configuration is that were the last shell is full, i.e. it has 8 electrons.
The closer an atom is to reach the 8 electrons in the outer shell the bigger the electron affinity.
Of the three elements, Br needs only 1 electron to have 8 electrons in the outer shell, so it has the biggest electron affinity (the least negative).
Ge: needs 2 electrons to have 8 electrons in the outer shell, so it has a smaller (more negative) electron affinity than Br.
Kr, which is a noble gas, has 8 electrons and is not willing to attract more electrons at all, the it has the lowest (more negative) electron affinity of all three to the extension that really the ion is so unstable that it does not make sense to talk about a number for the electron affinity of this atom.
Answer:
0.79 s
Explanation:
We have to calculate the employee acceleration, in order to know the minimum time. According to Newton's second law:

The frictional force is maximum since the employee has to apply a maximum force to spend the minimum time. In y axis the employee's acceleration is zero, so the net force is zero. Recall that 
Now, we find the acceleration:

Finally, using an uniformly accelerated motion formula, we can calculate the minimum time. The employee starts at rest, thus his initial speed is zero:
