Answer:
80 m/s
Explanation:
Given:
a = -5 m/s²
v = 0 m/s
Δx = 640 m
Find: v₀
v² = v₀² + 2a(x − x₀)
(0 m/s)² = v₀² + 2(-5 m/s²) (640 m)
v₀ = 80 m/s
Answer:
The value of bending stress on the pinion 35.38 M pa
Explanation:
Given data
m = 2 mm
Pressure angle
= 20°
No. of teeth T = 17
Face width (b) = 20 mm
Speed N = 1650 rpm
Power = 1200 W
Diameter of the pinion gear
D = m T
D = 2 × 17
D = 34 mm
Velocity of the pinion gear



Form factor for the pinion gear is
Y = 0.303
Now

Force on gear tooth


F = 408.73 N
Now the bending stress is given by the formula


= 35.38 M pa
This is the value of bending stress on the pinion
when approaching the front of an idling jet engine, the hazard area extends forward of the engine approximately 25 feet.
<h3>What impact, if any, would jet fuel and aviation gasoline have on a turbine engine?</h3>
Tetraethyl lead, which is present in gasoline, deposits itself on the turbine blades. Because jet fuel has a higher viscosity than aviation gasoline, it may retain impurities with greater ease.
Once the gasoline charge has been cleared, start the engine manually or with an electric starter while cutting the ignition and using the maximum throttle.
On the final approach, the aeroplane needs to be re-trimmed to account for the altered aerodynamic forces. A substantial nose-down tendency results from the airflow producing less lift on the wings and less downward force on the horizontal stabiliser due to the reduced power and slower velocity.
Learn more about turbine engine refer
brainly.com/question/807662
#SPJ4
I believe the website www.asanet.org will help (: