The <span>force that is needed to accelerate an object 5 m/s if the object has a mass of 10kg 50N because you multiply 5 and 10</span>
Answer:
8.00 kJ
Explanation:
The first thing is to determine what quantities are there.
the mass of water = 1 000 kg
initial velocity, u = 6 m/s
final velocity, v = 4 m/s
the generator is operating at 100 % efficiency, so there is no energy loss.
The kinetic energy, Ek is converted to electrical energy, therefore Ek = electrical energy.
The kinetic energy is calculated as follows:
Ek = 1/2 mv²
= 1/2×(1 000)× (4)²
= 8 000 J/s
= 8.00 kJ Ans
A heat pump is a device that is capable of transferring heat energy from a source of heat to what is known as the heat sink. It also moves thermal energy in the opposite direction of a spontaneous heat transfer through heat absorption from a cold space and releasing it to a warmer space.
When a heat pump is being utilized for heating, it employs the same principle with that of the refrigeration cycle used by an air conditioner or a refrigerator, but in the opposite direction since it releases heat into a conditioned space rather than the surrounding environment. Moreover, heat pump resembles much as refrigeration since it has the same components with the latter except for the presence of a reverse valve.
The kinetic energy at the bottom of the swing is also 918 J.
Assume the origin of the coordinate system to be at the lowest point of the pendulum's swing. A pendulum, when raised to the highest point has potential energy since it is raised to a height h above the origin. At the highest point, the pendulum's velocity becomes zero, hence it has no kinetic energy. Its energy at the highest point is wholly potential.
When the pendulum swings down from its highest position, it gains velocity. Hence a part of its potential energy begins to convert itself into kinetic energy. If no dissipative forces such as air resistance exist, then, the law of conservation of energy can be applied to the swing.
Under the action of conservative forces, the total mechanical energy of a system remains constant.This means that the sum of the potential and kinetic energies of a body remains constant.
When the pendulum reaches the lowest point of its swing, it is at the origin of the chosen coordinate system. Its vertical displacement from the origin is zero, hence its potential energy with respect to the origin is zero. Therefore the entire potential energy of 918 J should have been converted into kinetic energy, according to the law of conservation of energy.
Thus, the kinetic energy of the pendulum at the lowest point of its swing is equal to the potential energy it had at its highest point, which is equal to <u>918 J.</u>
It would be D Democritus
He contributed in around 460-370 BC
Whereas the others contributed much later from around 1700's - 1900's