complete question:
An observer at the top of a 462-ft cliff measures the angle of depression from the top of the cliff to a point on the ground to be 5°. What is the distance from the base of the cliff to the point on the ground? Round to the nearest foot
Answer:
a ≈ 5281 ft
Explanation:
The observer at the top of a 462 ft cliff measures the angle of depression from the top of the cliff to a point on the ground to be 5°.
The angle of depression form the top of the cliff = 5°
The 5° is outside the triangle formed . To find the angle in the triangle we have to subtract 5° from 90°. 90° - 5° = 85° Note sum of an angle on a right angle is 90°.
using SOHCAHTOA principle we can solve for the distance from the base of the cliff to the point on the ground(a)
tan 85° = opposite / adjacent
tan 85° = a / 462
cross multiply
462 × tan 85° = a
a = 11.4300523 × 462
a = 5280.66 ft
a ≈ 5281 ft
Answer:
Explanation:
Question is incomplete
Assuming the question you have asked is
You are driving home from school steadily at 95 km/h for 180 km. It then begins to rain and you slow to 65 km/h. You arrive home after driving 4.5 h.
given,
speed of 95 km/h for 180 km
due to rain
speed is reduced to 65 km/h
distance traveled in 4.5 hour
time taken to travel 180 km
d = s x t

t = 1.9 hr
distance traveled in time, t' = 4.5-1.9 = 2.6 hr
Speed of vehicle = 65 Km/h
d' = s x t'
d' = 65 x 2.6
d'= 169 Km
total distance your hometown from school
D = d + d'
D = 180 + 169
D = 349 Km
5.625 hours and it is 450 divided by 80
Have A Good Day
Answer:
1.0s
Explanation:
distance = 1/2 × acceleration × time2 + intial speed × time
Distance fallen = 1/2 ( V initial + V final ) *t
We know
a = -9.8 m/s2
t=120s
To find distance fallen, we need to find V final
Use the equation
V final = V initial + a*t
Substitute known values
V final = 0 + (-9.8)(120)
V final = -1176 m/s
Then plug known values to distance fallen equation
Distance fallen = 1/2 ( 0 + 1176 )(120)
= 1/2(1776)(120)
=106,560 m
This way plugging into distance equation is actually the long way. A faster way is to plug the values into
Distance fallen = V initial * t + 1/2(a*t)
We won't need to find V final using another equation.
But anyways, good luck!