Answer:
After 12 seconds, the area enclosed by the ripple will be increasing rapidly at the rate of 1206.528 ft²/sec
Explanation:
Area of a circle = πr²
where;
r is the circle radius
Differentiate the area with respect to time.
dr/dt = 4 ft/sec
after 12 seconds, the radius becomes =
To obtain how rapidly is the area enclosed by the ripple increasing after 12 seconds, we calculate dA/dt
dA/dt = 1206.528 ft²/sec
Therefore, after 12 seconds, the area enclosed by the ripple will be increasing rapidly at the rate of 1206.528 ft²/sec
If you multiply m (the unit for wavelength) with 1s (the unit for frequency), you will get m/s, the unit for speed. Now multiply! 25 m/s is your final answer!
Answer:
a.3Hz
b.0.0034m
Explanation:
First, we know the flute is an open pipe, because open pipe as both end open and a close organ pipe as only one end close.
The formula relating the length and he frequency is giving as
.
a.we first determine the length of the flute at the fundamental frequency i.e when <em>n</em>=1 and when the speed is in the 342m/s
Hence from
.
since the value of the length will remain constant, we now use the value to determine the frequency when the air becomes hotter and the speed becomes 345m/s.
Hence the require beat is
.
b. since the length is dependent also on the speed and frequency, we determine the new length when she plays with a fundamental frequency when the speed of sound is 345m/s
using the formula
Now to determine the extension,
Ilana is togladly hospitalized for the loss and the loss and her family of the dead were in a coma and she had to go on the plane and then to go to a hotel and to see if the girl had a child and a woman was in a car crash or something like it could have caused a lot to happen with her body that could help him get out the next morning after a long day of work and a woman was in a condition of a new yo girl in her apartment and was taken into a car in a coma at a
Answer:
The force they will exert on each other is 1.6*10⁻¹⁰ N
Explanation:
The electromagnetic force is the interaction that occurs between bodies that have an electric charge. When the charges are at rest, the interaction between them is called the electrostatic force. Depending on the sign of the interacting charges, the electrostatic force can be attractive or repulsive. The electrostatic interaction between charges of the same sign is repulsive, while the interaction between charges of the opposite sign is attractive.
Coulomb's law is used to calculate the electric force acting between two charges at rest. This force depends on the distance "r" between the electrons and the charge of both.
Coulomb's law is represented by:
where:
- F = electric force of attraction or repulsion in Newtons (N). Like charges repel and opposite charges attract.
- k = is the Coulomb constant or electrical constant of proportionality.
- q = value of the electric charges measured in Coulomb (C).
- r = distance that separates the charges and that is measured in meters (m).
In this case:
- k= 9*10⁹
- q1= 1.602*10⁻¹⁹ C
- q2= 1.602*10⁻¹⁹ C
- r= 1.2*10⁻⁹ m
Replacing:
and solving you get:
F=1.6*10⁻¹⁰ N
<u><em>The force they will exert on each other is 1.6*10⁻¹⁰ N</em></u>