The size of the force varies inversely as the square of the distance between the two charges. Therefore, if the distance between the two charges is doubled, the attraction or repulsion becomes weaker, decreasing to one-fourth of the original value.
51.448 g is the required answer!
Answer:
19.95 J
Explanation:
The center of mass of the ladder is initially at a height of:

The center of mass of the ladder ends at a height of:
=L/2
So, the work done is equal to the change in potential energy which is:
W = PE = 
now 
therefore
W = [mgL/2]×[1 - sin(theta)]
W = [(7.30)(9.81)(2.50)/2]×[1-sin(51°)]
solving this we get
W = 19.95 J
Answer:Explanation:
Image result for what does a worm and wheel mechanism do to torque and speed
Like other gear arrangements, a worm drive can reduce rotational speed or transmit higher torque. ... Each full 360 degree turn of a single start worm advances the gear by one tooth. For a multi start worm the gear reduction equals the number of teeth on the gear divided by the number of starts on the worm.
Answer:
The answer to the question is
The distance d, which locates the point where the light strikes the bottom is 29.345 m from the spotlight.
Explanation:
To solve the question we note that Snell's law states that
The product of the incident index and the sine of the angle of incident is equal to the product of the refractive index and the sine of the angle of refraction
n₁sinθ₁ = n₂sinθ₂
y = 2.2 m and strikes at x = 8.5 m, therefore tanθ₁ = 2.2/8.5 = 0.259 and
θ₁ = 14.511 °
n₁ = 1.0003 = refractive index of air
n₂ = 1.33 = refractive index of water
Therefore sinθ₂ =
=
= 0.1885 and θ₂ = 10.86 °
Since the water depth is 4.0 m we have tanθ₂ =
or x₂ =
=
= 20.845 m
d = x₂ + 8.5 = 20.845 m + 8.5 m = 29.345 m.