Explanation:
The given data is as follows.
(NaCl) = 
(H-O=C-ONO) = 
(HCl) = 
Conductivity of monobasic acid is 
Concentration = 0.01 
Therefore, molar conductivity (
) of monobasic acid is calculated as follows.

= 
= 
= 
Also,
= 
= 
= 
Relation between degree of dissociation and molar conductivity is as follows.

= 
= 0.1254
Whereas relation between acid dissociation constant and degree of dissociation is as follows.
K = 
Putting the values into the above formula we get the following.
K = 
= 
= 
= 
Hence, the acid dissociation constant is
.
Also, relation between
and
is as follows.

= 
= 3.7454
Therefore, value of
is 3.7454.
Answer:
Pb(C2H3O2)2 + KI ----> PbI2 + KC2H3O2
Explanation:
all the numbers are written as subscripts
Many electrophilic aromatic halogenations require the presence of an aluminum trihalide as a catalyst. We generally acetylated the amino group as protection. Now, this acetanilide can be brominated at Ortho or para position. An atom that is attached to an aromatic system usually hydrogen is replaced by an electrophile is an organic reaction which is called Electrophilic aromatic substitution. There are what you called important electrophilic aromatic substitutions they are aromatic nitration, aromatic sulfonation, aromatic halogenation and acylation and alkylating Friedel-Crafts reaction. Aromatic bromination is an electrophilic aromatic substitution (EAS) reaction, which will require benzene to act as a nucleophile to acquire an electrophile. Therefore, any directing groups that activate the ring will make it react more quickly with respect to aromatic bromination. Acetanilide is a moderately-activated ring <span>having a decent EWG.</span>
Answer:
pH = 12.7
Explanation:
First, we have to calculate the [Ca²⁺] in a solution of about 250 ppm CaCO₃.

Now, let's consider the dissolution of Ca(OH)₂ in water.
Ca(OH)₂(s) ⇄ Ca²⁺(aq) + 2 OH⁻(aq)
The solubility product Ksp is:
Ksp = [Ca²⁺] × [OH⁻]²
[OH⁻] = √(Ksp/[Ca²⁺]) = √(6.5 × 10⁻⁶/2.5 × 10⁻³) = 5.1 × 10⁻² M
Finally, we can calculate pOH and pH.
pOH = -log [OH⁻] = -log (5.1 × 10⁻²) = 1.3
pH + pOH = 14 ⇒ pH = 14 - pOH = 14 - 1.3 = 12.7
Answer:
Gravitational potential energy - into Kinetic energy
Explanation: