If the scale reads 650N, then the mass of whoever it is standing on the scale is
(weight) / (gravity) = (650N) / (9.8 m/s²) = 66.3 kilograms .
It's not MY mass, even if I'm the one standing on the scale.
If I stand on a scale and it reads 650 N, the scale is broken.
Answer:
<em>The direction of the magnetic field on point P, equidistant from both wires, and having equal magnitude of current flowing through them will be pointed perpendicularly away from the direction of the wires.</em>
Explanation:
Using the right hand grip, the direction of the magnet field on the wire M is counterclockwise, and the direction of the magnetic field on wire N is clockwise. Using this ideas, we can see that the magnetic flux of both field due to the currents of the same magnitude through both wires, acting on a particle P equidistant from both wires will act in a direction perpendicularly away from both wires.
Explanation:
It is given that,
The period of the carrier wave, T = 0.01 s
Let f and
are frequency and the wavelength of the wave respectively. The relationship between the time period and the frequency is given by :


f = 100 Hz
The wavelength of a wave is given by :



So, the frequency and wavelength of the carrier wave are 100 Hz and
respectively. Hence, the correct option is (c).
Answer:
3) Ep = 13243.5[J]
4) v = 17.15 [m/s]
Explanation:
3) In order to solve this problem, we must use the principle of energy conservation. That is, the energy will be transformed from potential energy to kinetic energy. We can calculate the potential energy with the mass and height data, as shown below.
m = mass = 90 [kg]
h = elevation = 15 [m]
Potential energy is defined as the product of mass by gravity by height.
![E_{p}=m*g*h\\E_{p}=90*9.81*15\\E_{p}=13243.5[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5CE_%7Bp%7D%3D90%2A9.81%2A15%5C%5CE_%7Bp%7D%3D13243.5%5BJ%5D)
This energy will be transformed into kinetic energy.
Ek = 13243.5 [J]
4) The velocity can be determined by defining the kinetic energy, as shown below.
![E_{k}=\frac{1}{2} *m*v^{2} \\v = \sqrt{\frac{2*E_{k} }{m} }\\ v= \sqrt{\frac{2*13243.5 }{90} }\\v=17.15[m/s]](https://tex.z-dn.net/?f=E_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%20%5C%5Cv%20%3D%20%5Csqrt%7B%5Cfrac%7B2%2AE_%7Bk%7D%20%7D%7Bm%7D%20%7D%5C%5C%20v%3D%20%5Csqrt%7B%5Cfrac%7B2%2A13243.5%20%7D%7B90%7D%20%7D%5C%5Cv%3D17.15%5Bm%2Fs%5D)
10 joules of work is done by the object