1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LiRa [457]
3 years ago
10

The melting of polar ice is one effect of

Physics
1 answer:
Stels [109]3 years ago
5 0
The melting of polar ice is one effect of the greenhouse effect, or also global warming.

The greenhouse effect, as defined by Merriam-Webster, is "the <span>warming of the surface and lower atmosphere of a planet (as Earth or Venus) that is caused by conversion of solar radiation into heat in a process involving selective transmission of short wave solar radiation by the atmosphere, its absorption by the planet's surface, and reradiation as infrared which is absorbed and partly reradiated back to the surface by atmospheric gases".

In short, "</span>the warming of the surface and lower atmosphere of a planet".
You might be interested in
In trial 1 of an experiment, a cart moves with a speed of vo on a frictionless, horizontal track and collides with another cart
marta [7]

Answer:

1) elastic shock, the velocity of the center of mass does not change

2) inelastic shock, he velocity of the mass center   change

Explanation:

The position of the center of mass of your system is defined by

          x_{cm} = \frac{1}{M} \sum x_i m_i

in this case we have two bodies

          x_{cm} = \frac{1}{M} (x₁m₁ + x₂ m₂)

the velocity of the center of mass is

          x_{cm} = dx_{cm} / dt = \frac{1}{M} ( m_1 \frac{dx_1}{dt} \ + m_2 \frac{dx_2}{dt} )

          x_{cm} = \frac{1}{M} ( m_1 v_1 + m_2 v_2 )

where M is the total mass of the system.

Therefore to answer this question we have to find the velocity of the body after the collision.

Let's use momentum conservation, where the system is formed by the two bodies, so that the forces have been internal during the collision.

Let's solve each case separately.

2) inelastic shock

initial instant. Before the crash

         p₀ = m₁ v₀ + 0

final instant. After the collision with the cars together

        p_f = (m₁ + m₂) v

         p₀ = p_f

         m₁ v₀ = (m₁ + m₂) v

         v = \frac{m_1}{m_1+m_2}  v₀

let's find the velocity of the center of mass

         M = m₁ + m₂

initial.

         v_{cm o} = \frac{1}{m_1 +m_2} (m₁ vo)

final

         v_{cm f} = \frac{1}{M} ( \frac{m_1}{m_1 + m_2} v_o ) ( v) = v

         v_{cm f} =  \frac{m_1}{M^2} v_o

Let's find the ratio of the velocities of the center of mass

          vcmf / vcmo = \frac{1}{M} = \frac{1}{m_1 +m_2}

           

           

therefore the velocity of the mass center   change

1) elastic shock

initial instant.

           p₀ = m₁ v₀

final moment

           p_f = m₁ v_{1f} + m₂ v_{2f}

           p₀ = p_f

           m₁ v₀ = m₁ v_{1f} + m₂ v_{2f}

           m₁ (v₀ - v_{2f}) = m₂ v_{2f}

in this case the kinetic energy is conserved

           K₀ = K_f

          ½ m₁ v₀² = ½ m₁ v_{1f}² + ½ m₂ v_{2f}²

           m₁ (v₀² - v_{1f}²) = m₂ v_{2f}²

           m₁ (v₀ + v_{1f}) (v₀ - v_{1f}) = m₂ v_{2f}

we write our system of equations

           m₁ (v₀ - v_{1f}) = m₂ v_{2f}             (1)

           m₁ (v₀ - v_{1f}) (v₀ + v_{1f}) = m₂ v_{2f}²

we solve the system

             v₀ + v_{1f} = v_{2f}

we substitute and look for the final speeds

             v_{1f} = \frac{m_1 -m_2}{m1 +m2 } v_o

             v_{2f} = \frac{2 m_1}{m-1+m_2} vo

now let's find the velocity of the center of mass

initial

          v_{cm o} = \frac{1}{M} m₁ v₀

final

          v_{cm f} = \frac{1}{M}  (m₁ v_{1f} + m₂ v_{2f} )

          v_{cm f} = \frac{1}{M} [  m_1  \frac{m_2}{M} + m_2  \frac{2 m_1}{M} ] v₀

          v_{cm f} = \frac{1}{M^2} ( m₁² - m₁m₂ +2 m₁m₂) v₂

          v_{cm f} = \frac{1}{M^2} (m₁² + m₁ m₂) v₀

let's look for the relationship

         v_{cm f} / v_{cm o} = \frac{1}{M} M

         v_{cm f} / v_{cm o} = 1

therefore the velocity of the center of mass does not change

we see in either case the velocity of the center of mass does not change.

4 0
3 years ago
n isolated charged soap bubble of radius R0=7.45 cmR0=7.45 cm is at a potential of V0=307.0 volts.V0=307.0 volts. If the bubble
Gnesinka [82]

Complete Question

An isolated charged soap bubble of radius R0 = 7.45 cm  is at a potential of V0=307.0 volts. V0=307.0 volts. If the bubble shrinks to a radius that is 19.0%19.0% of the initial radius, by how much does its electrostatic potential energy ????U change? Assume that the charge on the bubble is spread evenly over the surface, and that the total charge on the bubble r

Answer:

The difference is    U_f -U_i = 16 *10^{-7} J

Explanation:

From the question we are told that

     The radius of the soap bubble  is  R_o =  7.45 \ cm =  \frac{7.45}{100} =  0.0745 \ m

      The potential of the soap bubble is  V_1  =307.0 V

      The new radius of the soap bubble  is R_1 =  0.19 * 7.45=1.4155\ cm = 0.014155 \ m

The initial electric potential is mathematically represented as

     U_i  = \frac{V_1^2 R_o }{2k }

The final  electric potential is mathematically represented as

    U_f  = \frac{V_2^2 R_1 }{2k }

The initial potential is mathematically represented as

     V_1 =  \frac{kQ}{R_o}

The final  potential is mathematically represented as

        V_2 =  \frac{kQ}{R_1}

Now  

         \frac{V_2}{V_1}  =  \frac{R_o}{R_1}

substituting values

        \frac{V_2}{V_1}  =  \frac{7.45}{1.4155} =   \frac{1}{0.19}

=>      V_2 =  \frac{V_1}{0.19}

    So

         U_f  = \frac{V_1^2 R_2 }{2k * 0.19^2}

Therefore

        U_f -U_i = \frac{V_1^2 R_2 }{2k * 0.19^2} - \frac{V_1^2 R_o }{2k }

       U_f -U_i =     \frac{V_1^2}{2k} [\frac{ R_1 }{ * 0.19^2} - R_o]

where k is the coulomb's constant with value 9*10^{9} \  kg\cdot m^3\cdot s^{-4}\cdot A^2.

substituting values

       U_f -U_i =     \frac{307^2}{9 * 10^{9}} [\frac{ 0.014155 }{ 0.19^2} - 0.0745]

       U_f -U_i = 16 *10^{-7} J

           

     

8 0
3 years ago
Which part of the eye is used to see things in high detail?
irina1246 [14]

Answer:

Retina is the part of eye which is used to see things in high details

7 0
3 years ago
An automobile having a mass of 1,000 kg is driven into a brick wall in a safety test. The bumper behaves like a spring with cons
Nady [450]

To solve this problem it is necessary to apply the concepts related to the conservation of energy, specifically the potential elastic energy against the kinetic energy of the body.

By definition this could be described as

PE = KE

\frac{1}{2}kx^2 = \frac{1}{2}mv^2

Where

k = Spring constant

x = Displacement

m = mass

v = Velocity

This point is basically telling us that all the energy in charge of compressing the spring is transformed into the energy that allows the 'impulse' seen in terms of body speed.

If we rearrange the equation to find v we have

v = \sqrt{\frac{kx^2}{m}}

Our values are given as

m = 1000kg

k = 5.75*10^6N/m

x = 3.12*10^{-2}m

Replacing at our equation we have then,

v = \sqrt{\frac{kx^2}{m}}

v = \sqrt{\frac{(5.75*10^6)(3.12*10^{-2})^2}{1000}}

v = 2.3658m/s

Therefore he speed of the car before impact, assuming no energy is lost in the collision with the wall is 2.37m/s

4 0
3 years ago
What can you assume has happened if an electron moves to a higher energy level
tresset_1 [31]

The extra energy that the electron suddenly has had to
come from somewhere, so I can assume that one of
two things happened:

either 1).  A photon passed by and the electron absorbed it.

      or 2).  Somebody hooked up a battery or a generator in
such a way that the electron was bathed in a field of electrostatic
potential, and suddenly had the get-up-and-go to jump to a higher
energy level, and possibly even to leave its atom completely and
zip over to a neighbor atom.

7 0
3 years ago
Read 2 more answers
Other questions:
  • The mechanical advantage tells you the number of times a machine *what* the effort force
    11·1 answer
  • A street light is on top of a 12 foot pole. a person who is 5 feet tall walks away from the pole at a rate of 4 feet per second.
    11·1 answer
  • If the temperature of an ideal gas is increased from 200 K to 600 K, what happens to the rms speed of the molecules? (a) It incr
    11·2 answers
  • Which was not a feature of the northwest ordinance of 1787
    13·1 answer
  • Una bala calibre se deja caer desde el piso 84 (a una altura de 250 metros) La bala tiene una masa de 0,008 kg. ¿A qué velocidad
    12·1 answer
  • The first satellite placed in orbit was?
    15·1 answer
  • Plutonium-241 is an isotope of plutonium that is highly radioactive and is used in some nuclear reactors and many nuclear weapon
    12·2 answers
  • A 6.00 kg object at rest is suddenly broken apart into two fragments by an explosion. The fragment with mass 3.50 kg is moving 2
    8·1 answer
  • Umnotho usemhlabathini amaphuzu​
    7·1 answer
  • The agonist in a movement is the muscle that provides the major force to complete the movement
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!