For this problem, the confidence interval is the one we are looking
for. Since the confidence level is not given, we assume that it is 95%.
The formula for the confidence interval is: mean ± t (α/2)(n-1) * s √1 + 1/n
Where:
<span>
</span>
α= 5%
α/2
= 2.5%
t
0.025, 19 = 2.093 (check t table)
n
= 20
df
= n – 1 = 20 – 1 = 19
So plugging in our values:
8.41 ± 2.093 * 0.77 √ 1 + 1/20
= 8.41 ± 2.093 * 0.77 (1.0247)
= 8.41 ± 2.093 * 0.789019
= 8.41 ± 1.65141676
<span>= 6.7586 < x < 10.0614</span>
I’m pretty sure This rounds to 900
Answer: y axis
Just think the yo yo goes up and down
Step-by-step explanation:
The value of p is 11. To find this, you must isolate the variable, p, so you divide 10 by both sides of the equation to get p=11.
Answer:
steps below
Step-by-step explanation:
3.2.1 AD = DB* sin 2 = DB * sin θ .. DE // AB ∠2= θ ... (1)
By laws of sines: DB / sin ∠5 = x / sin ∠4
∠4 = θ-α ∠5 = 180°-<u>∠1</u>-∠4 = 180°-<u>∠3</u>-∠4 = 180°-(90°-θ)-(θ-α)) = 90°+α
DB = (x*sin ∠5)/sin (θ-α)
= (x* sin (90°+α)) / sin (θ-α)
AD = DB*sinθ
= (x* sin (90°+α))*sinθ / sin (θ-α)
= x* (sin90°cosα+cos90°sinα)*sinθ / sin (θ-α) .... sin90°=1, cos90°=0
= x* cosα* sinθ / sin (θ-α)
3.2.2 Please apply Laws of sines to calculate the length