Answer:
Inertia is the property of mass that resists change. Therefore, it is safe to say that as the mass of an object increases so does its inertia.
Explanation:
C. Chemical Energy is transformed to light energy and heat energy. The heat energy is keeping you warm and light energy is giving you the light you need to be able to read the book.
The First Law describes how an object acts when no force is acting upon it. So, rockets stay still until a force is applied to move them. Likewise, once they're in motion, they won't stop until a force is applied. Newton's Second Law tells us that the more mass an object has, the more force is needed to move it. A larger rocket will need stronger forces (eg. more fuel) to make it accelerate. The space shuttles required seven pounds of fuel for every pound of payload they carry. Newton's Third Law states that "every action has an equal and opposite reaction". In a rocket, burning fuel creates a push on the front of the rocket pushing it forward.
Answer:
B. 59 kg
Explanation:
From the graph you notice that a linear relation in indicated by the line joining the points such that the points on the line represent the data that show a correct relationship in the experiment.
This means that the point outside the line has an error .
This point is the value 59 kg that does not align with other values which are included in the graph.
You have effectively got two capacitors in parallel. The effective capacitance is just the sum of the two.
Cequiv = ε₀A/d₁ + ε₀A/d₂ Take these over a common denominator (d₁d₂)
Cequiv = ε₀d₂A + ε₀d₁A / (d₁d₂) Cequiv = ε₀A( (d₁ + d₂) / (d₁d₂) )
B) It's tempting to just wave your arms and say that when d₁ or d₂ tends to zero C -> ∞, so the minimum will occur in the middle, where d₁ = d₂
But I suppose we ought to kick that idea around a bit.
(d₁ + d₂) is effectively a constant. It's the distance between the two outer plates. Call it D.
C = ε₀AD / d₁d₂ We can also say: d₂ = D - d₁ C = ε₀AD / d₁(D - d₁) C = ε₀AD / d₁D - d₁²
Differentiate with respect to d₁
dC/dd₁ = -ε₀AD(D - 2d₁) / (d₁D - d₁²)² {d2C/dd₁² is positive so it will give us a minimum} For max or min equate to zero.
-ε₀AD(D - 2d₁) / (d₁D - d₁²)² = 0 -ε₀AD(D - 2d₁) = 0 ε₀, A, and D are all non-zero, so (D - 2d₁) = 0 d₁ = ½D
In other words when the middle plate is halfway between the two outer plates, (quelle surprise) so that
d₁ = d₂ = ½D so
Cmin = ε₀AD / (½D)² Cmin = 4ε₀A / D Cmin = 4ε₀A / (d₁ + d₂)