Answer:
2.6 kJ
Explanation:
The formula for the amount of heat (q) absorbed by the water is
q = mCΔT
1. Calculate ΔT
ΔT = 23.5 °C - 22.1 °C = 1.4 °C
2. Calculate q
q₂ = mCΔT = 500 g × 4.184 J·°C⁻¹g⁻¹ × 1.4 °C = 2900 J = 2.9 kJ
The glass containing the effervescence tablet has a greater air space than the other.
<h3>What is effervescence?</h3>
The term effervescence refers to the evolution of a gas. An effervescence tablet is a tablet that is designed to release the gas called carbon dioxide.
When we add the effervescence tablet and compare the level of the water in the two bowls, we will see that the water in the glass containing the effervescence tablet has a greater air space than the other.
Learn more about carbon dioxide:brainly.com/question/14445045
Answer:
1. In an atom, electrons (negatively charged) revolve around the positively charged nucleus in a definite circular path called as orbits or shells.
2. Each orbit or shell has a fixed energy and these circular orbits are known as orbital shells.
3. The energy levels are represented by an integer (n=1, 2, 3…) known as the quantum number. This range of quantum number starts from nucleus side with n=1 having the lowest energy level. The orbits n=1, 2, 3, 4… are assigned as K, L, M, N…. shells and when an electron attains the lowest energy level it is said to be in the ground state.
4. The electrons in an atom move from a lower energy level to a higher energy level by gaining the required energy and an electron moves from a higher energy level to lower energy level by losing energy.
Explanation:
The most important thing to determine whether a change is physical or chemical is whether the substance was changed. When the substance being changed, it is chemical change. Otherwise, it is physical.
Answer:
They are products because they are present after the reaction.
Explanation:
A chemical reaction refers to any interaction between two or more chemical species that leads to the formation of new chemical species. The species that interacted with each other are called reactants. They were present before the reaction commenced. The species that were formed after the interaction are called products. They only appear after the reaction.
In cellular respiration, carbon dioxide and water appear after the chemical reactions that take place, hence they are products.