A particle<span> is a minute fragment or quantity of matter. In the physical sciences, a </span>particle<span> is a small localized object to which can be ascribed several physical or a</span> chemical<span> properties such as volume or mass.</span>
when carbon dioxide gas is collected down ward of water wet gas is collected by the downward displacement of water . This is used for gases that are not very soluble in water . ... In water , carbon dioxide produces a weakly acidic solution , carbonic acid .
Below is an attachment of the Lewis structure with the lowest formal charges.
The formal charge is the fictitious charge that an atom in a molecule would have if the electrons in the bonds were evenly distributed among the atoms. The nonbonding electrons on a neutral atom are subtracted from its valence electron count, which is then followed by the number of bonds that bind it to other atoms in the Lewis structure, to get the formal charge. This is another way to put it. When hyponitrous acid is oxidized in the atmosphere, nitric and nitrous acids are produced. By reducing a nitrate or nitrite by sodium amalgam in the presence of water, hyponitrite salts have been created.
Learn more about formal charge here-
brainly.com/question/11723212
#SPJ4
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
<h3>What is the boiling-point elevation?</h3>
Boiling-point elevation describes the phenomenon that the boiling point of a liquid will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent.
- Step 1: Calculate the molality of the solution.
We will use the definition of molality.
b = mass solute / molar mass solute × kg solvent
b = 30.0 g / (58.44 g/mol) × 3.75 kg = 0.137 m
- Step 2: Calculate the boiling-point elevation.
We will use the following expression.
ΔT = Kb × m × i
ΔT = 0.512 °C/m × 0.137 m × 2 = 0.140 °C
where
- ΔT is the boiling-point elevation
- Kb is the ebullioscopic constant.
- b is the molality.
- i is the Van't Hoff factor (i = 2 for NaCl).
The normal boiling-point for water is 100 °C. The boiling-point of the solution will be:
100 °C + 0.140 °C = 100.14 °C
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
Learn more about boiling-point elevation here: brainly.com/question/4206205
<span>In 1669 German merchant and amateur alchemist Hennig Brand attempted to created a Philosopher’s Stone; an object that supposedly could turn metals into pure gold. He heated residues from boiled urine, and a liquid dropped out and burst into flames. This was the first discovery of phosphorus.
In 1680 Robert Boyle also discovered phosphorus, and it became public.
In 1809 at least 47 elements were discovered, and scientists began to see patterns in the characteristics.
In 1863 English chemist John Newlands divided the then discovered 56 elements into 11 groups, based on characteristics.
In 1869 Russian chemist Dimitri Mendeleev started the development of the periodic table, arranging chemical elements by atomic mass. He predicted the discovery of other elements, and left spaces open in his periodic table for them.
In 1886 French physicist Antoine Bequerel first discovered radioactivity. Thomson student from New Zealand Ernest Rutherford named three types of radiation; alpha, beta and gamma rays. Marie and Pierre Curie started working on the radiation of uranium and thorium, and subsequently discovered radium and polonium. They discovered that beta particles were negatively charged.
In 1894 Sir William Ramsay and Lord Rayleigh discovered the noble gases, which were added to the periodic table as group 0.In 1897 English physicist J. J. Thomson first discovered electrons; small negatively charged particles in an atom. John Townsend and Robert Millikan determined their exact charge and mass.
In 1900 Bequerel discovered that electrons and beta particles as identified by the Curies are the same thing.
In 1903 Rutherford announced that radioactivity is caused by the breakdown of atoms.
In 1911 Rutherford and German physicist Hans Geiger discovered that electrons orbit the nucleus of an atom.
In 1913 Bohr discovered that electrons move around a nucleus in discrete energy called orbitals. Radiation is emitted during movement from one orbital to another.
In 1914 Rutherford first identified protons in the atomic nucleus. He also transmutated a nitrogen atom into an oxygen atom for the first time. English physicist Henry Moseley provided atomic numbers, based on the number of electrons in an atom, rather than based on atomic mass.
In 1932 James Chadwick first discovered neutrons, and isotopes were identified. This was the complete basis for the periodic table. In that same year Englishman Cockroft and the Irishman Walton first split an atom by bombarding lithium in a particle accelerator, changing it to two helium nuclei.
In 1945 Glenn Seaborg identified lanthanides and actinides (atomic number >92), which are usually placed below the periodic table.</span>