Answer:
22.656 grams of oxygen gas are there in a 2.3L tank at 7.5 atm and 24° C
Explanation:
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law:
P * V = n * R * T
where R is the molar constant of the gases and n the number of moles.
In this case you know:
- R= 0.082

- T= 24 °C= 297 °K (being 0°C=273°K)
Replacing:

Solving:

n=0.708 moles
Knowing that oxygen gas is a diatomic gas of molecular form O₂ and its mass is 32 g / mole, you can apply the following rule of three: if 1 mole contains 32 grams, 0.708 moles, how much mass will it have?

mass= 22.656 grams
<u><em>22.656 grams of oxygen gas are there in a 2.3L tank at 7.5 atm and 24° C</em></u>
Answer/ explanation :
The find the mass,
We use this formula
Number of mole = mass/ molar mass
Since number of mole = 3.25mol
Number of mass be x
Molar mass of H2SO4
H - 1.00784 * 2= 2.01568
S - 32.065
O - 15.999 * 4 = 63.996
Note there are 2 moles of H and 4 moles of O and 1 mole of S
Molar mass of H2SO4 = 2.01568 + 32.065 + 63.996
= 98.07668g/mol
Number of mole= 3.25mol
3.25 = x / 98.07668
x = 3.25 * 98.07668
= 318.749g
Therefore, the number of mass is 318.749g
<span>A device that generates an intense beam of coherent monochromatic light (or other electromagnetic radiation) by stimulated emission of photons from excited atoms or molecules. Lasers are used in drilling and cutting, alignment and guidance, and in surgery; the optical properties are exploited in holography, reading bar codes, and in recording and playing compact discs.</span>