The resistance expected of the heater is 50.1 ohms.
<h3>What is resistance?</h3>
Resistance can be defined as the opposition to the flow of electric current in an electric circuit. The S.I unit of resistance is Ohms (Ω).
To calculate the resistance of the heater, we use the formula below.
<h3>Formula:</h3>
- R = V²/P............. Equation 1
Where:
- R = Resistance of the heater
- P = Power of the heater
- V = Voltage supplied to the heater
From the question,
Given:
- V = 480 V
- P = 4.6 kW = 4600 W
Substitute these values into equation 1
- R = (480²)/4600
- R = 50.1 ohms.
Hence, the resistance expected of the heater is 50.1 ohms.
Learn more about resistance here: brainly.com/question/17563681
Compression and rarefraction, the other guy's answer it's wrong
The answer is 10,560 Joules or 1.1*10^4
Explanation:
Step 1: Calculate
The equation for Kinetic Energy is
Kinetic energy=.5 times Mass times Velocity²
KE=.5*m*v²
so we plug in our numbers
KE=.5*600*35.2²
This works out to be 10,560 Joules or 1.1*10^4
The answer is "B".. Galileo discovered that dropping two items of the same mass, they can have different weights but no matter what the force that is acting upon them is the same amount, so this means that both objects will hit the ground at the same time. Galileo tested this theory and proved it right.
Answer:+1.25 m/s
Explanation:
Given
mass of ice skater M=70 kg
mass of ball m=10 kg
the initial velocity of the ball 
Conserving linear momentum
![M\times0+m\timesu_1=(M+m)v\quad \quad [v=\text{combined velocity of skater and ball}]](https://tex.z-dn.net/?f=M%5Ctimes0%2Bm%5Ctimesu_1%3D%28M%2Bm%29v%5Cquad%20%5Cquad%20%5Bv%3D%5Ctext%7Bcombined%20velocity%20of%20skater%20and%20ball%7D%5D)

Therefore the velocity of the person holding the ball is 1.25 m/s
This collision represents the perfectly inelastic collision where particles stick together after the collision.