Wavelength is the distance of one frequency wave peak to the other and
is most commonly associated with the electromagnetic spectrum.[1]
Calculating wavelength is dependent upon the information you are given.
If you know the speed and frequency of the wave, you can use the basic
formula for wavelength. If you want to determine the wavelength of light
given the specific energy of a photon, you would use the energy
equation. Calculating wavelength is easy as long as you know the correct
equation.
Hey there mate ;), Im Benjemin and lets solve your question.
★ (Alkanes) : forms single bonds between carbon atoms.
The first four elements are gases and others are liquid in state.
★(Alkenes) : forms double bonds between carbon atoms.
The first three alkenes are gases and rest are liquid.
★ (Alkynes) : forms triple bonds between carbon atoms.
First three are gases and the last one is liquid.
According to boiling point :
The larger structure of the hydrocarbons, the higher the boiling points they have.
In the 3 tables, we can see that the boiling point increases.
Answer:
We need 78.9 mL of the 19.0 M NaOH solution
Explanation:
Step 1: Data given
Molarity of the original NaOH solution = 19.0 M
Molarity of the NaOH solution we want to prepare = 3.0 M
Volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
Step 2: Calculate volume of the 19.0 M NaOH solution needed
C1*V1 = C2*V2
⇒with C1 = the concentration of the original NaOH solution = 19.0 M
⇒with V1 = the volume of the original NaOH solution = TO BE DETERMINED
⇒with C2 = the concentration of the NaOH solution we want to prepare = 3.0 M
⇒with V2 = the volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
19.0 M * V2 = 3.0 M * 0.500 L
V2 = (3.0 M * 0.500L) / 19.0 M
V2 = 0.0789 L
We need 0.0789 L
This is 0.0789 * 10^3 mL = 78.9 mL
We need 78.9 mL of the 19.0 M NaOH solution
Answer:
A - Increase (R), Decrease (P), Decrease(q), Triple both (Q) and (R)
B - Increase(P), Increase(q), Decrease (R)
C - Triple (P) and reduce (q) to one third
Explanation:
<em>According to Le Chatelier principle, when a system is in equilibrium and one of the constraints that affect the rate of reaction is applied, the equilibrium will shift so as to annul the effects of the constraint.</em>
P and Q are reactants, an increase in either or both without an equally measurable increase in R (a product) will shift the equilibrium to the right. Also, any decrease in R without a corresponding decrease in either or both of P and Q will shift the equilibrium to the right. Hence, Increase(P), Increase(q), and Decrease (R) will shift the equilibrium to the right.
In the same vein, any increase in R without a corresponding increase in P and Q will shift the equilibrium to the left. The same goes for any decrease in either or both of P and Q without a counter-decrease in R will shift the equilibrium to the left. Hence, Increase (R), Decrease (P), Decrease(q), and Triple both (Q) and (R) will shift the equilibrium to the left.
Any increase or decrease in P with a commensurable decrease or increase in Q (or vice versa) with R remaining constant will create no shift in the equilibrium. Hence, Triple (P) and reduce (q) to one third will create no shift in the equilibrium.
Answer:
second law of acceleration
Explanation:
hope this helps :)