Answer:
Colloidal can not be separated through filtration.
Suspension can be separated through filtration.
Explanation:
Colloidal:
Colloidal consist of the particles having size between 1 - 1000 nm i.e, 0.001- 1μm. While the pore size of filter paper is 2μm. That's why we can not separate the colloidal through the filtration. However it can be separated through the ultra filtration. In ultra filtration the pore size is reduced by soaking the filter paper in gelatin and then in formaldehyde. This is only in case of when solid colloidal is present, if colloid is liquid , there is no solid particles present and ultra filtration can not be used in this case.
Suspension:
The particle size in suspension is greater than 1000 nm. The particles in suspension can be separated through the filtration. These particles are large enough and can be seen through naked eye.
Answer:
Glycogen in an important storage polysaccharide found in animal tissues.
Explanation:
Full question:
Glycogen ________
A) forms the regulatory molecules known as enzymes
B) serves as a structural component of human cells
C) helps to protect vital organs from damage
D) is an important storage polysaccharide found in animal tissues
E) contains the genetic information found in cells
Glycogen is a complex polysaccharide of glucose founded in humans, animals, fungi and even bacteria. In humans, the glycogen is made and stored in liver cells. In the center on glycogen molecule, there is a single protein called Glycogenin. It is a center of a big flower made of glucose molecules (please refer to the scheme attached - Glycogenin is red and the blue lines are glucose chains). Glycogen is also stored in skeletal muscle, red and white blood cells, in glial brain cells and kidneys but in a smaller amounts. It can be found in the placenta in pregnant women where it serves as a nutrient storage for embryo. In an adult, the liver weighs 1,5 kg and glycogen weighs about 120g in such a liver. After a meal, the level of sugar is rising and the insulin is being secreted. Insulin is a tool by which sugar is being delivered to the cells, like a food delivery. During this period, glycogen is being synthesized in the liver out of glucose residues. When the meal is digested, the sugar level is back to normal. When more energy is needed, glycogen from the liver is broken down by glycogen phosphorylase and the new sugar is released into the bloodstream.

Answer:
this one is hard
Explanation:
but it's iron because the sodium so yea there u go.