Answer:
3
Explanation:
v = v⁰ (its original speed) + a (negative acceleration) X t² (time)
v = 15 - 10 x 1.2 = 15 - 12 = 3 (it's slowing down)
Answer:
Option A. 1 bar = 1 atm
Explanation:
Pressure has various units of measurement. Each unit of measurement can be converted to other units of measurement. For example:
1 atm = 1 bar
1 atm = 760 mmHg
1 atm = 760 torr
1 atm = 1×10⁵ N/m²
1 atm = 1×10⁵ Pa
With the above conversion scale we can convert from one unit to the other.
Considering the question given above, it is evident from the coversion scale illustrated above that only option A is correct.
Thus,
1 bar = 1 atm
Answer:
the potentail of kinetic and potential energy
Explanation:
first explain the concept of kinetic energy (what it is and what its used for) and give examples (cars, a basketball thrown across a hall, and airplane), and do the same with potential energy (the energy an object stores, example: a streched rubber band)
Answer:
I₂ = 25.4 W
Explanation:
Polarization problems can be solved with the malus law
I = I₀ cos² θ
Let's apply this formula to find the intendant intensity (Gone)
Second and third polarizer, at an angle between them is
θ₂ = 68.0-22.2 = 45.8º
I = I₂ cos² θ₂
I₂ = I / cos₂ θ₂
I₂ = 75.5 / cos² 45.8
I₂ = 155.3 W
We repeat for First and second polarizer
I₂ = I₁ cos² θ₁
I₁ = I₂ / cos² θ₁
I₁ = 155.3 / cos² 22.2
I₁ = 181.2 W
Now we analyze the first polarizer with the incident light is not polarized only half of the light for the first polarized
I₁ = I₀ / 2
I₀ = 2 I₁
I₀ = 2 181.2
I₀ = 362.4 W
Now we remove the second polarizer the intensity that reaches the third polarizer is
I₁ = 181.2 W
The intensity at the exit is
I₂ = I₁ cos² θ₂
I₂ = 181.2 cos² 68.0
I₂ = 25.4 W