I think it is a, b, and e. Hope it helps! :)
Answer:
34.3 m/s
Explanation:
Newton's Second Law states that the resultant of the forces acting on the car is equal to the product between the mass of the car, m, and the centripetal acceleration
(because the car is moving of circular motion). So at the top of the hill the equation of the forces is:

where
(mg) is the weight of the car (downward), with m being the car's mass and g=9.8 m/s^2 is the acceleration due to gravity
R is the normal reaction exerted by the road on the car (upward, so with negative sign)
v is the speed of the car
r = 0.120 km = 120 m is the radius of the curve
The problem is asking for the speed that the car would have when it tires just barely lose contact with the road: this means requiring that the normal reaction is zero, R=0. Substituting into the equation and solving for v, we find:

Answer:
There are 4 forces because a parallelogram has 4 sides.
It is a quadilateral. Let me know if I am right or not.
The answer is A, A ground fault circuit interrupted monitors the amount of electricity in a circuit and if there is any leakage or an interruption of current it cuts the power to avoid a shock your welcome :)
Answer:
The correct answer will be "0.25 sec".
Explanation:
The graph of the given question is attached below.
According to the graph of the question,
Time,
T = 1 sec
For the upward velocity,
⇒ 
By putting the value, we get
⇒ 
⇒ 