Answer:
f = 8 N
Explanation:
Data provided in the question
Radius of the pulley = r = 0.05 m
Moment of inertia = (I) = 0.2 kg.m^{2}
Angular acceleration = ∝ = 2 rad/sec
Based on the above information
As we know that
Torque is


And,
Torque is also


So,
We can say that


0.05f = 0.4
f = 8 N
We simply applied the above formulas
Good morning.
We have:

Where
j is the unitary vector in the direction of the
y-axis.
We have that

We add the vector
-a to both sides:

Therefore, the magnitude of
b is
47 units.
Heat used by electric heater :
Q = m • c • ∆T
Q = (75 kg)(4200 J/kg°C)(43°C - 15°C)
Q = 8.82 × 10⁶ J
Cost of electrical energy :
Cost = (8.82 × 10⁶ J)/(3.6 × 10⁶ J) • ($ 0.15)
Cost = $ 0.3675
The velocity of the ball when it was caught is 12.52 m/s.
<em>"Your question is not complete it seems to be missing the following, information"</em>,
find the velocity of the ball when it was caught.
The given parameters;
maximum height above the ground reached by the ball, H = 38 m
height above the ground where the ball was caught, h = 30 m
The height traveled by the ball when it was caught is calculated as follows;
y = H - h
y = 38 - 30 = 8 m
The velocity of the ball when it was caught is calculated as;

Thus, the velocity of the ball when it was caught is 12.52 m/s.
Learn more here: brainly.com/question/14582703
In what may be one of the most remarkable coincidences in
all of physical science, the tangential component of circular
motion points along the tangent to the circle at every point.
The object on a circular path is moving in that exact direction
at the instant when it is located at that point in the circle. The
centripetal force ... pointing toward the center of the circle ...
is the force that bends the path of the object away from a straight
line, toward the next point on the circle. If the centripetal force
were to suddenly disappear, the object would continue moving
from that point in a straight line, along the tangent and away from
the circle.