0.5 swings per second (0.5 swings/sec if you want it shorter)
Answer:
A. 5.600 m
B. 5.800 s
C. 0.966 m/s
D. 0.315 m
Explanation:
A. The wavelength is the distance between 2 crests, which is 5.600 m
B. Period of the wave is the time for the wave to complete 1 circle (highest point to next highest point). Since it takes 2.9s to travel from highest point to lowest point, it would take another 2.9 to travel from lowest point to the next highest point. So the total time is 2.9 + 2.9 = 5.8 s,
C. The wavespeed is wavelength over unit of time:
5.6 / 5.8 = 0.966 m/s
D. The amplitude would be half the length of highest point to lowest point, which is 0.63 / 2 = 0.315 m
We know that a charge moving in a magnetic field is subject to the force:
F = q · v · B
But we also know that:
F = m · a
Therefore, it must be:
m · a = <span>q · v · B
And solving for a:
</span>a = <span>q · v · B / m
Recall that for a proton:
q = 1.6</span>×10⁻¹⁹ C
m = 1.673×10⁻²⁷ kg
Now, you can find:
a = 1.6×10⁻¹⁹ · 7.0 · 1.7 / <span>1.673×10⁻²⁷
= 1.14</span>×10⁹ m/s²
Hence, the acceleration of the proton is 1.14<span>×10⁹ m/s²</span>.
pls what is the specific heat capacity of water
Answer:
The 40g mass will be attached at 69 cm
Explanation:
First, make a sketch of the meterstick with the masses placed on it;
--------------------------------------------------------------------------
↓ Δ ↓
20 g.................50 cm.................40g
38 cm y cm
Apply principle of moment;
sum of clockwise moment = sum of anticlockwise moment
40y = 20 (38)
40y = 760
y = 760 / 40
y = 19 cm
Therefore, the 40g mass will be attached at 50cm + 19cm = 69 cm
12cm 50 cm 69cm
--------------------------------------------------------------------------
↓ Δ ↓
20 g.................50 cm.................40g
38 cm 19 cm